PHYSICS

Paper 2 Theory

MARK SCHEME

Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE®, Cambridge International A and AS Level components and some Cambridge O Level components.
Section A

1 (a) \((v = u + at)\) at or \(3.4 \times 5.0\)
\[17 \text{ m/s}\] C1

(b) (i) 0 or zero or no resultant force B1

(ii) straight line of positive gradient from (0, 0)
horizontal line at \(v > 0\) and after initial acceleration B1
straight line from (0, 0) to (5.0, 17) and B1
straight line from (5.0, 17) to at least (15.0, 17) B1

(iii) calculate the area under the graph or area of trapezium B1 [7]

2 (a) (i) \((\text{GPE} =) \quad mgh \quad \text{or} \quad 45 \times 10 \times 1.8\)
\[810 \text{ J} \quad \text{B1}\]

(ii) kinetic either order \(\quad \text{thermal/} \text{internal/} \text{heat/sound} \quad \text{either order}\) B1

(b) (i) upwards / centripetal / towards centre (of circle) B1

(ii) it / weight less (than normal contact force) or upward force greater B1 [6]

3 (a) (i) 20 N B1

(ii) 1. \((\Gamma =) Fd \quad \text{or} \quad 20 \times 0.35 \quad \text{or} \quad 20 \times 0.70 \quad \text{or} \quad 14\)
\[7.0 \text{ N m} \quad \text{A1}\]

2. friction (at hinge/seal) or air resistance or to cause an initial acceleration B1

(b) (for other directions) perpendicular distance is less B1 [5]

4 (a) temperature at which liquid/water turns to gas/vapour/steam B1

(b) (i) \((T = 24 \degree \text{C}) \quad \text{or} \quad 100 - 24 \quad \text{or} \quad 76\)
\((\Delta Q =) mc\Delta T \quad \text{or} \quad 1.5 \times 4200 \times 76\)
\[4.8 \times 10^5 \text{ J}\] C1

(ii) heat is lost (to the surroundings) or evaporation at higher temperatures heat is lost at greater rate B1

(c) (i) stays at 100 \degree \text{C}/constant B1

(ii) molecules separate / are pulled apart / are far apart / break bonds / overcome forces of attraction B1
work done separating the molecules or molecules gain PE B1 [9]
5 (a) atoms / molecules / particles move / collide
 atoms / molecules / particles collide with walls / piston
 collisions cause forces
 B1

 (b) \(\rho_2 = \frac{\rho_1 V_1}{V_2} \text{ or } 1.1 \times 10^5 \times 40 / 110 \)
 \(4.0 \times 10^4 \text{ Pa} \)
 C1

6 (a) any three of:
 filament is heated / hot or thermionic (emission) mentioned
 electrons negative or electrons escape / are emitted
 electrons attracted / accelerated by a positive charge / high potential / anode
 opposite charges attract or positive (anode) attracts negative (electrons)
 B3

 (b) no collisions with air / particles or allows electrons to reach the screen
 B1

 (c) electron beam is a current or moving charges
 deflected by a magnetic field or experience force in magnetic field
 M1

7 (a) 94 electrons and 94 protons
 144 neutrons
 (only) electrons in orbit / surrounding nucleus or (only) protons
 and neutrons in nucleus
 B1

 (b) (i) (beta-particles) weak(er)
 (beta-particles) strong(er)
 B1

 (ii) any two lines from
 glasses / goggles or lead container / shield / clothing / gloves
 tweezers / manipulator / carry in large cardboard box
 minimise time of exposure / film badge
 B2 [7]

© UCLES 2016
Section B

8 (a) (i) 0.83 – 0.86 N B1

(ii) line curved B1
line (curved) upwards B1 [3]

(b) (i)
\[(P =)h \rho g\]
\[0.035 \times 1000 \times 10 \text{ or } 3.5 \times 1000 \times 10 \text{ or } 35 \times 1000 \times 10 \]
350 Pa C1

(ii)
\[(F =)P \times A \text{ or } 350 \times 0.0016 \text{ or } 350 \times 16 \text{ or } 5600 \]
0.56 N C1

(iii) 1.4 N or (a)(i) + (b)(ii) calculated B1 [6]

(c) (i) (atmospheric pressure) exerts a downward force / pressure B1
(on top of the block) B1
(cancels out the) extra upward force / pressure B1

(ii) (vector) has direction (in addition to magnitude) B1 [3]

(d) any three lines from B1
force due to water increases C1
force due to spring decreases C1
increased pressure (at base) A1
they add to give a constant value / weight of block or total force constant B3 [3]

9 (a) rate of flow of charge or charge flowing per unit time B1 [1]

(b) (i) 7.5 V B1

(ii)
\[(R =)V / I \text{ or } 7.5 / 4.0 \]
1.9 \(\Omega\) C1

(iii)
\[(P =) VI \text{ or } 6.5 \times 4.0 \]
26 W C1

(iv) resistance increases (reading of ammeter) decreases M1
A1 [7]

(c) (i) at least two lines on left and two lines on right of core and B1
correct shape (by eye) B1
good shape (by eye) and into poles and no straight sections and B1
at least one line on each side B1
at least one arrow N to S (primarily upwards) and none wrong B1 [3]
(ii) 1 cylinder is magnetised (by induction)
 top (of cylinder) is an S-pole
 unlike poles attract or S-pole attracts N-pole

2 it does not (remain in contact) and iron is temporary/soft magnetic
 material/core (and cylinder) lose magnetisation

10 (a) (i) 3.0 × 10^8 m/s

(ii) \(\lambda = \frac{c}{f} \) or 3.0 × 10^8/4.3 × 10^{14}
 7.0 × 10^{-7} m

(b) (i) decreases

(ii) \(\sin(i) = n \times \sin(r) \) or 1.5 × \(\sin(30^\circ) \) or 0.75
 49°

(iii) 41°

(c) (i) dispersion at both surfaces and refractions in correct direction
 violet/blue light below the red light shown

(ii) spectrum or band of (continuous) colours or colours of rainbow
 red, orange, yellow, green, blue, (indigo, violet)

(iii) 1 X marked above red
 2 it is / black surfaces are good absorbers (of IR radiation)

(d) intruder/human being emits IR
 IR beam broken or IR reflected
 or intruder warm or
 does not reach change detected
 IR detected detector

© UCLES 2016