UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

4024 MATHEMATICS (SYLLABUS D)

4024/22 Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2011	4024	22

Abbreviations

cao correct answer only correct solution only cso

dep dependent

follow through after error ft iswignore subsequent working

or equivalent oe SCSpecial Case

without wrong working www

SECTION A

Qu.	Answers	Mark	Comments
1	(a) (i) $\frac{1}{10x}$ cao	1	
	(ii) $\frac{11x-12}{x(x-3)}$ final answer	2	M1 for $\frac{4(x-3)+7x}{x(x-3)}$
	(b) (i) ½ or 0.25	1	
	(ii) $c = 2$ cao $d = 1.5$ oe	2	If 0, B1 for $(f^{-1}(x)) = \frac{4x+3}{2}$
	(iii) $g = \frac{1}{2}$ or 0.5	2	M1 for $\frac{2g-3}{4} = -g$
2	(a) (i) $c = \frac{2A}{h} - d \text{ or } \frac{2A - hd}{h}$	2	M1 for $c + d = \frac{2A}{h}$ or $\frac{1}{2}hc = A - \frac{1}{2}hd$ oe
	final answer (ii) 3	1	or SC1 for $c = \frac{A}{\frac{1}{2}h} - d$
	(b) (i) 102	2	M1 for 31.5 and 19.5 used
	(ii) 322	3	M2 for (32.5 × 20.5)–(25.5 × 13.5) or M1 for (32.5 × 20.5) or (25.5 × 13.5)
3	(a) $\frac{1}{3}$	1	
	(b) (i) $\frac{1}{20}$	2	M1 for $\frac{1}{6} \times \frac{3}{5} \times \frac{2}{4}$ seen
	(ii) $\frac{3}{20}$	2	SC1 for $\frac{5}{36}$
			M1 for $\left(\frac{3}{6} \times \frac{2}{5} \times \frac{1}{4}\right) + \left(\frac{3}{6} \times \frac{2}{5} \times \frac{2}{4}\right)$ seen

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2011	4024	22

4	(a) (i) $(u_n) = 3n + 1$ oe	1	
	(ii) 61	1ft	ft their u_n with $n = 20$
	(b) (i) $(v_n) = 17 - 2n$ oe	1	
	(ii) $(k =)$ 49 cao	1	
5	(a) 11 30 cao	1	
	(b) 39 minutes	1	
	(c) 8 km	1	
	(d) 24 km/h	1	
	(e) park and shopping centre	1	
	(f) Salim and 9 minutes	2	B1 for 12 27 or 1 hour 12 minutes seen or 1.2 hours or 72 minutes or for line from (11.15,0) to (12.15,15)
6	(a) (£)1350	1	
	(b) (£)225	1ft	ft their (a) 6
	(c) 108°	1ft	ft $\frac{405}{\text{their}(\mathbf{a})} \times 360$ or $\frac{405}{\text{their}(\mathbf{b})} \times 60$
	(d) (£)300	2	SC1 for 120° or £450 seen.
	(e) (£)199.80	2	B1 for (£)70.20 or M1 for (1 – 0.26) × 270 oe
	(f) 9(%)	3	M2 for figs $\frac{3645}{405}$ or $\frac{11745}{405}$ or $\frac{28755}{405}$ seen SC1 for 81 or 324 seen
	(g) (£)250	2	M1 for 108 % 270 soi
7	(a) (i) 2	1	
	(ii) (a) $q-r$ (b) $2p-q-r$ (c) $1\frac{1}{2}p-r$ (d) $\frac{1}{2}p-q+\frac{1}{2}r$	1 1 1 1	
	(b) (i) 45°	1	
	(ii) 95°	1ft	ft 140 – their (b)(i)
	(iii) 80°	1ft	ft 125 – their (b)(i)

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2011	4024	22

SECTION B

8	(a) (i) $\begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix}$	2	B1 for 3 correct terms
	(ii) $\begin{pmatrix} -1 & -2 \\ 1.5 & 2.5 \end{pmatrix}$ or $\frac{1}{2} \begin{pmatrix} -2 & -4 \\ 3 & 5 \end{pmatrix}$	2	B1 for $k \begin{pmatrix} -2 & -4 \\ 3 & 5 \end{pmatrix} k \frac{1}{2}$
	(b) (i) Reflection $y = 1$	1 1	or $\frac{1}{2} \times (2 \times 2 \text{ matrix})$
	(ii) Enlargement Scale factor ½ Centre (-5,0)	1 1	
	(iii) (-2,3)(-4,5)(-4,7)	2	B1 for 2 correct vertices or for $\begin{pmatrix} -2 & -4 & -4 \\ 3 & 5 & 7 \end{pmatrix}$
	(iv) Rotation 90° anticlockwise about (0,0)	1 1	
9	(a) -5, -6	1	
	(b) All points plotted correctly <u>and</u> a smooth curve – generous quadratic	2ft	B1 for 5 or more points correct ft from their table
	(c) (i) $x = -2.2 \text{ to } -2.35 \text{ and}$ 1.65 to 1.85	1	
	(ii) −6.4 <i>mv</i> < −6.0	1	
	(iii) 8 to 10	2	M1 for tangent
	(d) (i) $2x^2 + 4x - 3x - 6 = 1 - 2x$ leading to $2x^2 + 3x - 7 = 0$	1	
	(ii) $x = 1.27, -2.77$	4	B3 for one solution or $x = 1.26$ to 1.3 and -2.76 to -2.8 or if in form $\frac{p \pm (or + or -)\sqrt{q}}{r}$
			B1 for $p = -3$, $r = 4$ B1 for $q = 65$ or $\sqrt{q} = 8.06$

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2011	4024	22

10 (a) (i) $74.95 \rightarrow 75.05$ 1 (ii) $336.5 \rightarrow 337.5$ 3 M1 for $250^2 + 300^2 \pm 2 \times 250 \times 300\cos 75$ M1 for $\sqrt{152500 - 150000\cos 75} = \sqrt{11365}$ M2 for $\sin \theta = \frac{300\sin 75}{16eir 337}$ SC1 for $(C\hat{S}B =) 45.7 \rightarrow 45.8$ seen (b) (i) $241 \rightarrow 241.5$ 2 M1 for $\cos 15 = \frac{DB}{250}$ oe (ii) $12050 - 12100$ 2ft B1 for $\frac{1}{2} \times 200 \times 241 \times \sin 30$ ft $50 \times \text{their}$ (b) (i) $\sqrt{15^2 + 10^2} = 18(.0)$ 2 M1 for $15^2 + 10^2$ M	7)
(iii) $44.2 \rightarrow 44.3$ (iii) $44.2 \rightarrow 44.3$ 3 M1 for $\sqrt{152500 - 150000\cos 75} \left(= \sqrt{11367} \right)$ M2 for $\sin \theta = \frac{300\sin 75}{\sinh 37}$ SC1 for $(C\hat{S}B =) 45.7 \rightarrow 45.8$ seen (b) (i) $241 \rightarrow 241.5$ (ii) $12050 - 12100$ (iii) 225 2 M1 for $\cos 15 = \frac{DB}{250}$ oe 2ft B1 for $\frac{1}{2} \times 200 \times 241 \times \sin 30$ ft $50 \times \text{their}$ (b)(i) 1 (a) $\frac{7\pi r^2 H}{9}$ 3 B1 for $\frac{2\pi r^2 H}{3}$ and B1 for $\frac{\pi r^2 H}{9}$ (b) (i) $\sqrt{15^2 + 10^2} = 18(.0)$ 2 M1 for $15^2 + 10^2$ M1 for $15^2 + 10^2$ M1 for $2 \times \pi \times 10$ (iii) $62.8 \rightarrow 62.9$ or 20π 2 M1 for $\frac{\theta}{360} \times \pi \times 18 \times 2 = \text{their}$ (ii) (iv) $2760 \rightarrow 2770$ 3 M1 for $\frac{200}{360} \times \pi \times 18^2 (= 565.5)$	7)
(iii) $44.2 \rightarrow 44.3$ 3 M2 for $\sin \theta = \frac{300 \sin 75}{\text{their } 337}$ SC1 for $(C\hat{S}B =) 45.7 \rightarrow 45.8$ seen (b) (i) $241 \rightarrow 241.5$ 2 M1 for $\cos 15 = \frac{DB}{250}$ oe (ii) $12050 - 12100$ 2 ft B1 for $\frac{1}{2} \times 200 \times 241 \times \sin 30$ ft $50 \times \text{their } (\mathbf{b})(\mathbf{i})$ 11 (a) $\frac{7\pi r^2 H}{9}$ 3 B1 for $\frac{2\pi r^2 H}{9}$ 3 B1 for $\frac{\pi r^2 H}{9}$ 4 M1 for $15^2 + 10^2$ 6 M1 for $15^2 + 10^2$ 7 M1 for $15^2 + 10^2$ 8 M1 for $15^2 + 10^2$ 9 M1 for $15^2 + 10^2$ 10 M1 for $15^2 + 10^2$ 11 (ii) $15^2 + 10^2 = 18(.0)$ 12 M1 for $15^2 + 10^2$ 13 M1 for $15^2 + 10^2$ 14 M1 for $15^2 + 10^2$	<i></i>
(b) (i) $241 \rightarrow 241.5$	
(b) (i) $241 \rightarrow 241.5$	
(b) (i) $241 \rightarrow 241.5$	
(ii) $12050 - 12100$ (iii) 225 2ft B1 for $\frac{1}{2} \times 200 \times 241 \times \sin 30$ ft $50 \times$ their (b)(i) 11 (a) $\frac{7\pi r^2 H}{9}$ (b) (i) $\sqrt{15^2 + 10^2} = 18(.0)$ 2 M1 for $15^2 + 10^2$ (ii) $62.8 \rightarrow 62.9$ or 20π 2 M1 for $2 \times \pi \times 10$ (iii) $\theta = \frac{62.8 \times 360}{36\pi} = 200^\circ$ 2 M1 for $\frac{\theta}{360} \times \pi \times 18 \times 2 = \text{their (ii)}$ (iv) $2760 \rightarrow 2770$ 3 M1 for $\frac{200}{360} \times \pi \times 18^2 (= 565.5)$	
(iii) 225 1	
(iii) 225 1	
11 (a) $\frac{7\pi r^2 H}{9}$ 3 B1 for $\frac{2\pi r^2 H}{3}$ and B1 for $\frac{\pi r^2 H}{9}$ (b) (i) $\sqrt{15^2 + 10^2} = 18(.0)$ 2 M1 for $15^2 + 10^2$ (ii) $62.8 \rightarrow 62.9$ or 20π 2 M1 for $2 \times \pi \times 10$ (iii) $\theta = \frac{62.8 \times 360}{36\pi} = 200^\circ$ 2 M1 for $\frac{\theta}{360} \times \pi \times 18 \times 2 = \text{their}$ (ii) (iv) $2760 \rightarrow 2770$ 3 M1 for $\frac{200}{360} \times \pi \times 18^2 (= 565.5)$	
(b) (i) $\sqrt{15^2 + 10^2} = 18(.0)$ 2 M1 for $15^2 + 10^2$ (ii) $62.8 \rightarrow 62.9$ or 20π 2 M1 for $2 \times \pi \times 10$ (iii) $\theta = \frac{62.8 \times 360}{36\pi} = 200^\circ$ 2 M1 for $\frac{\theta}{360} \times \pi \times 18 \times 2 = \text{their (ii)}$ (iv) $2760 \rightarrow 2770$ 3 M1 for $\frac{200}{360} \times \pi \times 18^2 (= 565.5)$	
(b) (i) $\sqrt{15^2 + 10^2} = 18(.0)$ 2 M1 for $15^2 + 10^2$ (ii) $62.8 \rightarrow 62.9$ or 20π 2 M1 for $2 \times \pi \times 10$ (iii) $\theta = \frac{62.8 \times 360}{36\pi} = 200^\circ$ 2 M1 for $\frac{\theta}{360} \times \pi \times 18 \times 2 = \text{their (ii)}$ (iv) $2760 \rightarrow 2770$ 3 M1 for $\frac{200}{360} \times \pi \times 18^2 (= 565.5)$	
(b) (i) $\sqrt{15^2 + 10^2} = 18(.0)$ 2 M1 for $15^2 + 10^2$ (ii) $62.8 \rightarrow 62.9$ or 20π 2 M1 for $2 \times \pi \times 10$ (iii) $\theta = \frac{62.8 \times 360}{36\pi} = 200^\circ$ 2 M1 for $\frac{\theta}{360} \times \pi \times 18 \times 2 = \text{their}$ (ii) (iv) $2760 \rightarrow 2770$ 3 M1 for $\frac{200}{360} \times \pi \times 18^2 (= 565.5)$	
(ii) $62.8 \rightarrow 62.9 \text{ or } 20\pi$ 2 M1 for $2 \times \pi \times 10$ (iii) $\theta = \frac{62.8 \times 360}{36\pi} = 200^{\circ}$ 2 M1 for $\frac{\theta}{360} \times \pi \times 18 \times 2 = \text{their (ii)}$ (iv) $2760 \rightarrow 2770$ 3 M1 for $\frac{200}{360} \times \pi \times 18^{2} (= 565.5)$	
(iii) $\theta = \frac{62.8 \times 360}{36\pi} = 200^{\circ}$ (iv) $2760 \rightarrow 2770$ 2 M1 for $\frac{\theta}{360} \times \pi \times 18 \times 2 = \text{their (ii)}$ 3 M1 for $\frac{200}{360} \times \pi \times 18^2 (= 565.5)$	
(iii) $\theta = \frac{62.8 \times 360}{36\pi} = 200^{\circ}$ (iv) $2760 \rightarrow 2770$ 2 M1 for $\frac{\theta}{360} \times \pi \times 18 \times 2 = \text{their (ii)}$ 3 M1 for $\frac{200}{360} \times \pi \times 18^2 (= 565.5)$	
(iv) $2760 \rightarrow 2770$ 3 M1 for $\frac{200}{360} \times \pi \times 18^2 (= 565.5)$	
M1 for $30 \times \text{their}$ (ii) (= 1884)	
12 (a) 220, 288, 312, 320 1	
(b) (i) 7 correct plots and smooth ogive 3 B2 for 5 or 6 correct plots and smooth ogive or	'e
B1 for 5 or 6 correct plots	
(ii) (a) $83 \rightarrow 85$ 1ft from their graph	
(b) $13.5 \rightarrow 16.5$ 2 M1 for readings at 80 and 240 seen (c) $15 \text{ to } 19\%$ 2 SC1 for $48 \rightarrow 60 \text{ or } 81 \rightarrow 85 \text{ seen}$	ļ
(c) 15 to 19% 2 SC1 for $48 \rightarrow 60$ or $81 \rightarrow 85$ seen	
(iii) (a) 76 cao	
(b) 25% cao 1 (c) More pupils took longer (so) 1	
(c) More pupils took longer (so) 1 previous test was probably harder	