CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the October/November 2013 series

4024 MATHEMATICS (SYLLABUS D)

4024/12 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2013	4024	12

Abbreviations

cao correct answer only cso correct solution only

dep dependent

ft follow through after error isw ignore subsequent working

oe or equivalent SC Special Case

www without wrong working

soi seen or implied

Q	uestion	Answers	Mark	Part marks
1	(a)	2.38 oe	1	
	(b)	80 (.0)(0)	1	
2	(a)	$1\frac{9}{20}$	1	
	(b)	0.0602	1	
3	(a)	_7	1	
	(b)	$\frac{x+6}{2}$ oe	1	
4	(a)	(0)3 hours 48 minutes	1	
	(b)	$\frac{2}{5}$ 44% $\frac{4}{9}$	1	
5	(a) (b)		1	
6		8	2	B1 for " k " = 40 or M1 either for $20 \times 2 = 5y$ oe; or for (their k)/5, when $y = "k$ "/ x used
7	(a)	3.5×10^{7}	1	
	(b)	1.4×10^{-6}	1	
8		$\frac{3}{7}$	2	B1 for $7x = c$, or for $\frac{7x}{c} = C$, or for $cx = 3C$; where c and C are integers (not 0).

Page 3	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2013	4024	12

9		200	2	Dep. on three correct approximations seen . B1 for either $\sqrt{35.78} \approx 6$, or $\sqrt[3]{1005} \approx 10$
10		Any number between 4 and 5	2	B1 for $x < 5$, or for $5 > x$ seen. This may appear as, e.g., $4 < x < 5$.
11	(a)	45.5°	1	
	(b)	151°	2	C1 for $151 < x \le 151.2$ or M1 for $360 - 46.5 - 162.5$ or M1 for $360 - 46 - 162 - 1$
12	(a)	$\frac{9}{25}$	1	
	(b)	$\frac{3}{t^3} \text{ or } 3t^{-3}$ $\frac{x^2}{3y} \text{ or } \frac{1}{3}x^2y^{-1}$	1	
	(c)	$\frac{x^2}{3y}$ or $\frac{1}{3}x^2y^{-1}$	1	
13		Both $x = \frac{1}{2}$ and $y = -4$	3	C2 for either x or y correct WWW or C1 for a pair of values that satisfy either equation
14	(a)	1.35	1	
	(b)	1.1	1	
	(c)	104	1	
15	(a)	ВС D	1	
	(b)	Е	1	
	(c)	$y < \frac{1}{2} x$ oe	1	

Page 4	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2013	4024	12

16		76	3	Dep. on volume expressions in terms of a^3 .
				C2 for 76a, or 76a ² , or 76(π)a ³ , or $\frac{76}{a}$, or $\frac{76}{a^2}$, or $\frac{76}{a^3}$
				B1 for a 3-spheres volume of $\frac{4}{3}\pi \times (2a)^3 \times 3 \text{ or } 32\pi a^3$
				and B1 for a cylinder volume of $\pi \times (3a)^2 \times 12a$ or $108\pi a^3$;
				or B1 for both 108π and 32π without a^3 .
17	(a)	(5t-2)(5t+2)	1	
	(b)	$2r^2(3H-h)$	1	
	(c)	(4x-3)(2y+1)	2	B1 for partial factorisation $4x(2y + 1)$ or $-3(2y + 1)$ or $2y(4x - 3)$ seen
18	(a)	16	1	
	(b)	Rectangle, base 2 to 3, height 6 units Rectangle, base 7 to 9, height 2 units	1 1	
	(c)	ft $\frac{15}{31 + their(p)}$	1 √	
19	(a)	(2, 1)	1	
	(b)	$-\frac{2}{3}$ or any equiv. value	1	
	(c)	13	2	C1 for (√) 52
				or M1 for $6^2 + (-4)^2$, or for $6^2 + (4)^2$, etc.

Page 5	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2013	4024	12

20	(a)		Reflection $y = x$ oe	1 1	but lost if more than one transf. named indep. – but lost if more than one transf. named
	(b)	(i)	Triangle with vertices $(-1, 0), (-3, 0), (-3, 1)$	1	
		(ii)	$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$	1	
21	(a)		1	1	
	(b)		$\frac{1}{15}$	1	
	(c)		$\frac{4}{15}$	2	M1 for $\frac{3}{6} \times \frac{2}{5} \times \frac{2}{6} \times \frac{1}{5}$ oe or for any complete possibility diagram such as the one below, correctly used .
					2 3 3 4 4 4 2 - 23 23 24 24 24 3 32 - 33 34 34 34 3 32 33 - 34 34 34 4 42 43 43 - 44 44 4 42 43 43 44 - 44 4 42 43 43 44 44 -
22	(a)		48°	1	
	(b)		66°	1	
	(c)		24°	1	
	(d)		35°	1	
23	(a)		$15^2 - 1^2 = 8 \times (1 + 2 + 3 + 4 + 5 + 6 + 7)$	1	
	(b)		$(2n+1)^2-1^2$ oe	1	
	(c)		$(2n+1)^2 = 4n^2 + 4n + 1$ or $(2n+1)^2 - 1^2 = 4n^2 + 4n$, or $(2n)(2n+2)$	B1	
			Division of both sides by 8 and result obtained correctly	M1	
24	(a)		96° to 98°	1	
	(b)	(i)	acceptable perpendicular bisector of AB	1	
		(ii)	acceptable bisector of angle ABC	1	
	(c)		10 to 10.3	1	dep.on both (b) marks

Page 6	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2013	4024	12

25	(a)	16	1	
	(b)	150	1	
	(c)	45 WWW or ft $\frac{750 - their(b)}{20} + 15$	2 №	C1 for $\frac{750 - their(b)}{20}$ or M1 for $\frac{1}{2} \times (k + k - 15) \times 20 = 750$ or M1 for $20(k - 15) + their(b) = 750$ oe
	(d)	10	1	
26	(a)	Establishing, with reasons, that two pairs of angles are equal; and a conclusion (or an introductory statement), that the triangles are similar. e.g. $A\hat{B}D = B\hat{D}C$ (alternate angles) $A\hat{D}B = B\hat{C}D$ (given) Since two angles are equal, triangles ABD and BDC are similar.	2	B1 for $A\hat{B}D = B\hat{D}C$, with mention of alternate angles
	(b) (i)	6.3	2	B1 for $\frac{BC}{4.2} = \frac{6}{4}$ oe
	(ii)	$\frac{4}{9}$	1	

