

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

CANDIDATE NAME				
CENTRE NUMBER		NDIDATE MBER		

6317776406

MATHEMATICS (SYLLABUS D)

4024/21

Paper 2

October/November 2013

2 hours 30 minutes

Candidates answer on the Question Paper.

Additional Materials: Geometrical instruments

Electronic calculator

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Section A

Answer all questions.

Section B

Answer any four questions.

If working is needed for any question it must be shown in the space below that question.

Omission of essential working will result in loss of marks.

You are expected to use an electronic calculator to evaluate explicit numerical expressions.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 100.

Section A [52 marks]

Answer all questions in this section.

For Examiner's Use

			Answer an questions	iii uiis sec	1011.				
1	(a)	The rate of exchange between dollars (\$) and pounds (£) is $$1.56 = £1$. The rate of exchange between euros ($ \in $) and pounds is $ \in 1.10 = £1$.							
		(i)	Amy changes £300 into dollars.						
			Calculate how many dollars Amy receives.						
				Answer	\$[1]				
		(ii)	Ben changes €770 into pounds.						
			Calculate how many pounds Ben receives.						
				Answer	£[1]				
	((iii)	Chris changes \$780 into euros.						
			Calculate how many euros Chris receives.						

Answer \in [2]

(b)	Debbie changed some dollars into Japanese yen.
	The rate of exchange was 81 dollars = 1 yen.

Emma changed the same number of dollars into yen. The rate of exchange for Emma was 82 dollars = 1 yen.

Emma received 3 fewer yen than Debbie.

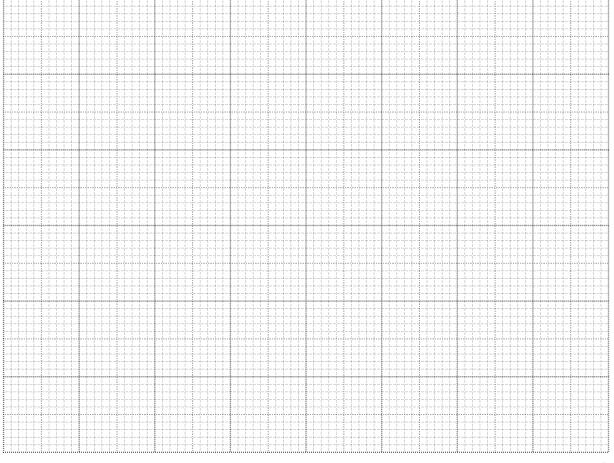
Given that the number of dollars changed each time is x, find x.

2	(a)	Construct the triangle ABC in which $B\hat{A}C = 40^{\circ}$ and $AC = 8 \text{ cm}$.	
		C is above the line AB , which is drawn for you.	
		$A \longrightarrow B$	
			[2]
	(b)	Construct the locus of all the points outside the triangle that are 2 cm from the perimeter the triangle.	of [2]
	(c)	Find and label the point P , inside the triangle, that is 6.5 cm from A and equidistant from B and C .	[2]

3	The line AB joins the point A (-2, 1) to the point B (6, 5).							
	(a)	Find the coordinates of the midpoint of AB .			Examiner Use			
			Answer	() [1]				
	(b)	Find the gradient of AB .						
			Answer	[1]				
	(c)	AB intersects the y-axis at the point $(0, c)$.						
		Find c .						
			Answer	[2]				
	(d)	Express \overrightarrow{AB} as a column vector.						
	` '	•						
			Answer	[1]				
	(e)	C is the point $(5, 2)$ and D is the point (h, k) . The lines AB and CD are equal in length and particles.	ırallel.					
		Find the coordinates of each of the possible poi	nts D .					
		Answer (······ , ······) and (,				

4 The table shows the distribution of the masses of 100 babies at birth.

Mass (x kg)	$1.5 < x \le 2$	$2 < x \le 2.5$	$2.5 < x \le 3$	$3 < x \leqslant 3.5$	$3.5 < x \le 4$	$4 < x \le 4.5$	$4.5 < x \le 5$
Number of babies	3	12	20	24	25	14	2


For Examiner's Use

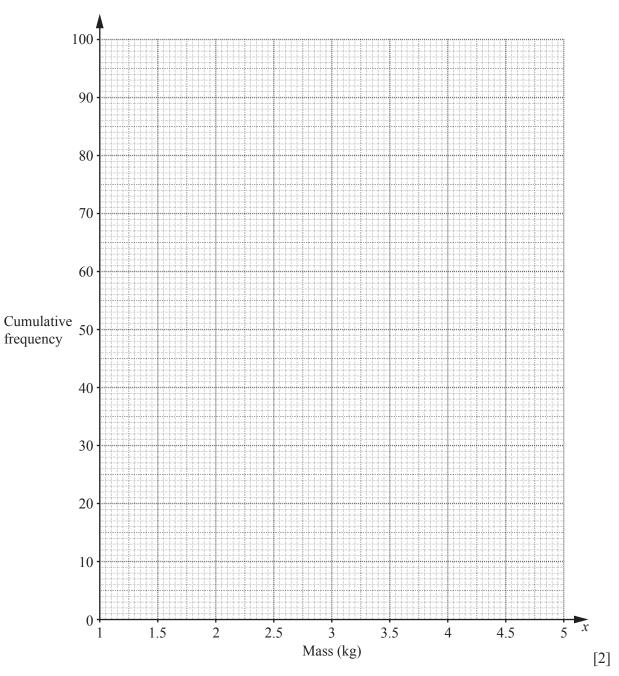
(a) Write down the modal class.

Answer	 Г1	1
Answei	 1 1	ı

(b) For this part of the question use the grid below. Using a scale of 4 cm to represent 1 kg, draw a horizontal x-axis for $1 \le x \le 5$. Using a scale of 2 cm to represent 5 babies, draw a vertical axis for frequency from 0 to 30.

Using your axes, draw a frequency polygon to represent these results.

[2]


[1]

(c) (i) Complete the cumulative frequency table below.

Mass (x kg)	<i>x</i> ≤ 2	<i>x</i> ≤ 2.5	<i>x</i> ≤ 3	<i>x</i> ≤ 3.5	<i>x</i> ≤ 4	<i>x</i> ≤ 4.5	<i>x</i> ≤ 5
Cumulative frequency	3	15					100

For Examiner's Use

(ii) On the grid below draw a smooth cumulative frequency curve to represent these results.

(d) Use your curve to estimate

(i) the median mass,

Answerkg [1]

(ii) the 10th percentile.

Answerkg [1]

5	(a)	Solve	$\frac{2}{3-x} =$	1.
5	(a)	Solve	$\frac{2}{3-x} =$	

Answer	 [11]
211113 VV CI	

- **(b)** Factorise
 - (i) 5x + 5y,

Answer[1]

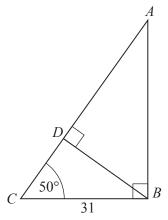
(ii) $9x^2 - 16$.

Answer[1]

(c) (i) Factorise $2x^2 + 5x - 12$.

Answer [1]

(ii) Use your answer to part (c)(i) to solve the equation $2x^2 + 5x - 12 = 0$.



(d)	A source of light is observed from a distance of d metres. The amount of light received, L units, is inversely proportional to the square of the distance.
	Given that $L = 9$ when $d = 2$, find the value of L when $d = 3$.

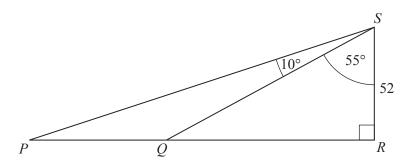
Answer

6 (a)

For Examiner's Use

In the triangle ABC, $A\hat{B}C = 90^{\circ}$, $A\hat{C}B = 50^{\circ}$ and BC = 31 m. D is the point on AC such that $B\hat{D}A = 90^{\circ}$.

(i) Show that CD = 19.93 m, correct to 2 decimal places.

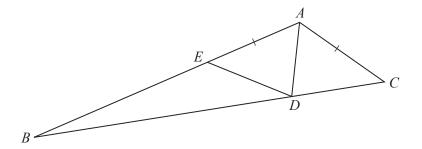

[2]

(ii) Calculate AD.

Answer m [3]

(b)

For Examiner's Use


Two boats are at the points P and Q. RS is a vertical cliff of height 52 m. $P\hat{S}Q = 10^{\circ}$ and $Q\hat{S}R = 55^{\circ}$.

(i)	State the	angle	of den	ression	of P	from S.
(1)	State the	ungic	or acp	10001011	011	mom b.

(ii) Calculate the distance, PQ, between the boats.

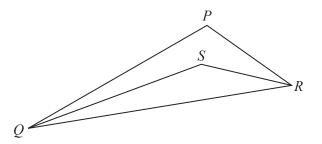
7 (a)

For Examiner's Use

In triangle ABC, D is the point on BC such that AD bisects $B\hat{A}C$ and E is the point on AB such that AE = AC.

(i) Show that triangles AED and ACD are congruent.

[3]


(ii) Given that $A\hat{B}D = x^{\circ}$, $E\hat{D}B = y^{\circ}$ and $A\hat{C}B = z^{\circ}$, find x in terms of y and z.

Answer
$$x = \dots [2]$$

© UCLES 2013

(b)

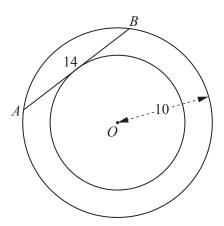
For Examiner's Use

In triangle PQR, QS bisects $P\hat{Q}R$ and RS bisects $P\hat{R}Q$. $P\hat{Q}R = 42^{\circ}$ and $P\hat{R}Q = 54^{\circ}$.

Find reflex angle QSR.

1 10 02 11 014	[O]
Answer	121

TeachifyMe.com Study The Smarter Way

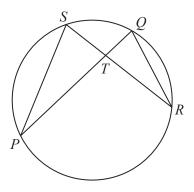

Section B [48 marks]

Answer **four** questions in this section.

Each question in this section carries 12 marks.

For Examiner's Use

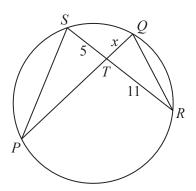
8 (a)



In the diagram, the circles each have centre O. AB is a chord of the larger circle and also a tangent to the smaller circle. AB = 14 cm and the radius of the larger circle is 10 cm.

Find the radius of the smaller circle.

Answer	cn	n [3]
--------	----	-------


(b)

In the diagram, PQ and RS are chords of a circle that intersect at T.

(i) Show that triangles *PST* and *RQT* are similar.

(ii)

For Examiner's Use

ST = 5 cm, TR = 11 cm and TQ = x cm.

Given that $PQ = 18 \,\mathrm{cm}$, show that x satisfies the equation

$$x^2 - 18x + 55 = 0.$$

[2]

(iii) Solve the equation $x^2 - 18x + 55 = 0$. Give each solution correct to 1 decimal place.

(iv) Find the difference between the lengths of PT and TQ.

Answer		cm	[1
--------	--	----	----

2.5

3

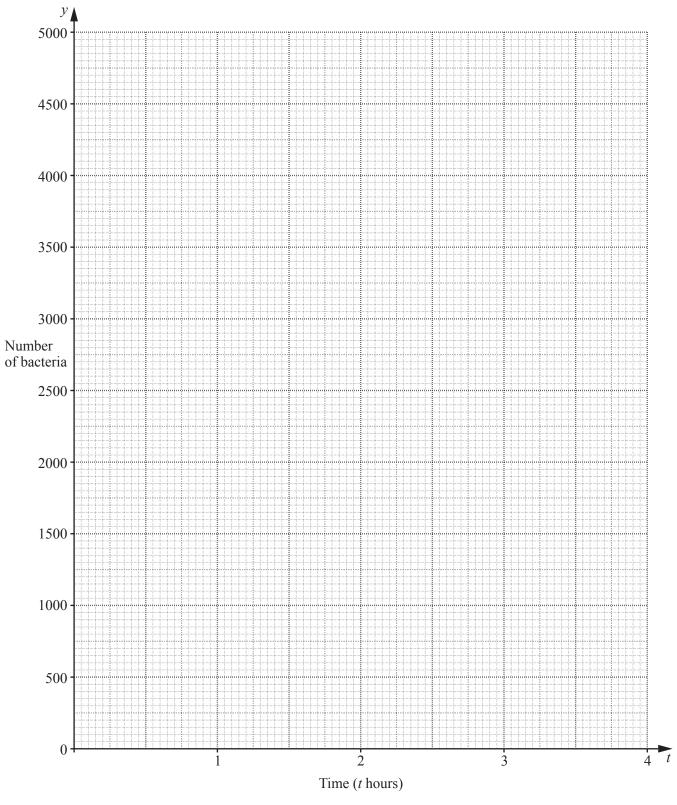
3.5

4

.....[1]

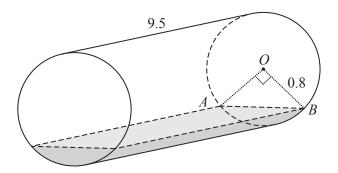
9	The number	of bacteria	in a colony	trebles every hour.
---	------------	-------------	-------------	----------------------------

The colony starts with 50 bacteria.


Time

The table below shows the number of bacteria (*y*) in the colony after *t* hours.

For Examiner's Use


	(t hours	\circ	'	1	2	2.5	3	3.3	4	
	Number bacteria	1 31	0	150	450	780	1350	2340		
(a)	Complete th	ne table.								[1]
(b)	On the grid smooth curv		posit	te page pl	ot the po	ints in the	table, an	d join the	em with a	[3]
(c)	Use your gr	aph to fin	d the	number	of bacter	ia in the c	colony wł	nen $t = 3.2$	2.	
						Ansı	wer	•••••		[1]
(d)	(i) By dra	wing a tar	ngen	t, estimat	e the grad	lient of th	e curve v	when $t = 2$	2.5 .	
						Ansı	wer			[2]
	(ii) What d	loes this g	gradie	ent repres	sent?					
	Answei	r		• • • • • • • • • • • • • • • • • • • •		•••••	•••••	•••••		•••••
			•••••	•••••	•••••					[1]
(e)	Given that t	he equation	on of	the grap	h is $y =$	ka^t , find	k and a .			
						Ansv	wer k =		a =	[1]
(f)	The number	of bacter	ria in	another	colony is	given by	the equat	y =	500 + 50)0t.
	(i) On the	same axe	s, dr	aw a grap	oh to repr	esent the	number o	of bacteria	a in this co	olony.
										F03
	(*) <u>(</u>	1	C.	1 .1	1 /	21 / .		1	1	[2]
	(ii) State the	ne value o	1 <i>t</i> w	then the n	umber of	bacteria	in each c	olony is t	he same.	

- 10 A fuel tanker delivers fuel in a cylindrical container of length 9.5 m and radius 0.8 m.
 - (a) After several deliveries, the fuel remaining in the container is shown in the diagram.

AB is horizontal, O is the centre of the circular cross-section and $A\hat{O}B = 90^{\circ}$.

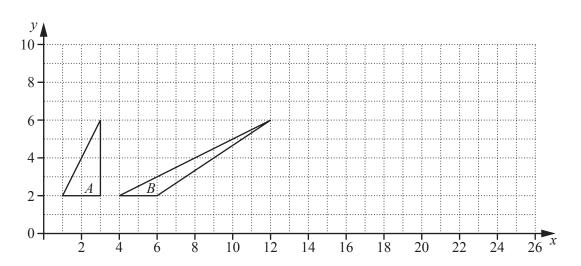
(i) Calculate the curved surface area of the container that is in contact with the fuel.

Answer m² [2]

(ii) Calculate the volume of fuel remaining in the container.

Answer m³ [4]

(iii) Calculate this volume remaining as a percentage of the volume of the whole container.


Answer% [2]

• •	1110	fuel is pumped through a cylindrical pipe of radius 4.5 cm at a rate of 300 cm/s.	F
	(i)	Calculate the volume pumped in 1 second.	Exam U
		Answer cm ³ [1]	
	(ii)	Calculate the time taken, in minutes, to pump 25 000 litres of fuel.	
	(11)	Give your answer correct to the nearest minute.	
		Answer minutes [3]	

11 The diagram shows triangles A and B.

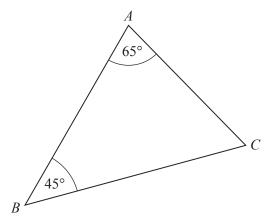
(a) (i) Describe fully the **single** transformation that maps triangle A onto triangle B.

Answer

(ii) Find the matrix that represents this transformation.

Answer () [2]

- **(b)** Triangle *B* is mapped onto triangle *C* by the transformation represented by the matrix $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$.
 - (i) On the grid above, draw and label triangle C. [2]
 - (ii) Give the name of this transformation.


Answer[1]

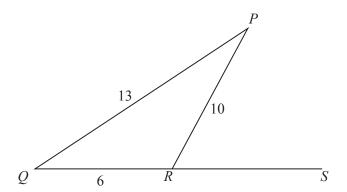
(iv) Find the ratio area of triangle C : area of triangle B . Answer	Answer [1] (c) Find the matrix that represents the single transformation that maps triangle A						
		(c)	Find onto	the matrix that triangle C .	represents the sing		[1]
			(iv)	Find the ratio	area of triangle (\	[2]

12 (a)

Examiner's Use

For

In triangle ABC, $A\hat{B}C = 45^{\circ}$ and $B\hat{A}C = 65^{\circ}$. AC is 5 cm shorter than BC.


(i) Show that
$$BC = \frac{5 \sin 65}{\sin 65 - \sin 45}$$
.

[3]

(ii) Find the length of BC.

TeachifyMe.com Study The Smarter Way

(b)

For Examiner's Use

In triangle PQR, PQ = 13 cm, QR = 6 cm and RP = 10 cm. QR is produced to S.

(i) Find the value of $\cos P\hat{R}Q$, giving your answer as a fraction in its lowest terms.


Answer	 [3]

(ii) Hence write down the value of $\cos P\hat{R}S$.

Answer[1]

TURN OVER FOR THE REST OF THIS QUESTION

(c)

For Examiner's Use

Triangle DEG has the same area as triangle DEF, but is not congruent to triangle DEF. The point G is lower than DE and GE = EF.

Draw the triangle *DEG* in the diagram above.

[1]

(d) In triangle LMN, $L\hat{M}N = 30^{\circ}$ and ML = 2MN.

When the area of triangle LMN is 18 cm^2 , calculate MN.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2013