MARK SCHEME for the October/November 2015 series

5054 PHYSICS

5054/22
Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2015 series for most
Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some
Cambridge O Level components.
$®$ IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge O Level - October/November 2015	5054	22

Section A

1 (a) $(V=) m / \rho$ or $10600 / 6500 / 4100 / 2400 \div 1000$ or 6.5 or 4.1
C1 $2.4 \mathrm{~m}^{3} / 2.4 \times 10^{6} \mathrm{~cm}^{3}$ A1
$\begin{array}{lc}\text { (b) (i) fuel/chemical (potential energy) } & \text { B1 } \\ \text { (ii) some to heat/thermal (energy) } \\ & \\ & \\ \text { some to kinetic (energy of air or tractor) } & \text { B1 } \\ \text { (c) }(G P E=) m g h \text { or } 2400 \times 10 \times 850 & \mathrm{~B} 1 \\ 2.0 / 2.04 \times 10^{7} \mathrm{~J} & \mathrm{C} 1\end{array}$

2 (a) any two from different lines of: distort/stretch/change in shape/squeezed/bends/deforms compresses/change in size/volume/density/depth/height change in temperature/gets hot(ter)/generates heat
(b) (i) straight line from origin \quad B1
upward curve labelled/clear from limit of proportionality B1
(ii) permanent extension or spring is longer than it was originally B1
(a) $(p=) h \rho g$ or $32 \times 1000 \times 10 \quad$ C1
$3.2 \times 10^{5} \mathrm{~Pa}$
A1
(b) (i) atmospheric pressure (is also acting on the surface of the water)
(ii) $(F=) p A$ or $4.2 \times 10^{5} \times 45$ or $3.2 \times 10^{5} \times 45$ or 1.44×10^{7} C1 $1.9 / 1.89 \times 10^{7} \mathrm{~N}$ A1
(c) (vector) has a direction or scalar does not have a direction or (vectors) may cancel or scalars cannot cancel

4 (a) wood is a poor/not a conductor or (good) insulator (of heat)
(b) (i) vibrating atoms/ions/particles/molecules or electrons gain energy
atoms/ions/particles/molecules hit free electrons or electrons travel (a long distance through the copper/saucepan)
electrons hit/transfer energy to (distant) atoms/ions/molecules/particles B1
(ii) hot/heated water expands/is less dense $\quad \mathrm{B1}$
hot/heated water/less dense water rises B1
(sets up) circulation/ convection (current) or cold water sinks B1

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge O Level - October/November 2015	5054	22

5 (a) (i) (the property) varies with temperature
(ii) any two from:
volume (of gas/liquid) or density or length (of thread)
voltage or current or e.m.f.
resistance
pressure (of gas)
colour
(quantity of) radiation emitted
liquid crystal structure
$\begin{array}{rlr}\text { (b) (i) temperature of melting ice/where water freezes or water/ice mixture } & \text { B1 } \\ \text { (ii) immerse thermometer in melting ice/at the ice point or boiling water/at } & \\ \text { steam point } \\ \text { or ice point and steam point marked/found (may be implied) } \\ \text { divide the difference into } 100 \text { units/sections } & \text { B1 }\end{array}$

6 (a) they/molecules move/collide faster or gain kinetic energy B1
they/molecules collide with walls more often or harder
B1
(b) pressure decreases B1
larger volume (of gas) or they/molecules move further between collisions B1
fewer collisions per unit time/reduced collision frequency (of molecules with wall) or collide less often or pressure decreases to atmospheric pressure
(b) (i) angle of incidence greater than critical angle or denser to rarer medium
(ii) reflected ray in correct direction (by eye) to edge of block and no second TIR (ign marked values)

8 (a) $(P=) V I$ or 230×27
(b) (i) $1.1 / 1.12 / 1.1178 \times 10^{7} \mathrm{~J}$
B1
(ii) $6.21 \times 0.5 \times 23$ or $6.21 \times 30 \times 23$ or $3.1 / 3.105 \times 23 \quad \mathrm{C} 1$

71/71.3/71.4/71.415c or \$ 0.71/0.714/0.71415 A1

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge O Level - October/November 2015	5054	22

Section B

9 (a) 12 NB1
(b) (i) 0 or zero B1
12 N or it is equal to the weight B1
(F increases) as the speed increases B1
(ii) (gravitational) potential to thermal energy or to k.e. of air B1
(iii) $(K E=)^{1} / 2 m v^{2}$ C1
$1 / 2 \times 1.2 \times 40^{2}$ C1
960 J A1
(c) (i) $(m=) E / l_{f}$ or Q / l_{f} or $960 / 330$ C1
$2.9 / 2.91 \mathrm{~g}$ or $2.9 / 2.91 \times 10^{-3} \mathrm{~kg}$ A1
(ii) any two from:ice is below $0^{\circ} \mathrm{C}$thermal energy transferred/lost (to ground/air)work done compressing/ compacting the groundB2
(d) any three from:molecules fixed in position or water molecules move aroundmolecules vibrate or water molecules do not vibratemolecules in regular lattice or water molecules placed randomly(interatomic) forces between ice molecules largerice molecules further apartB3
ice is below $0^{\circ} \mathrm{C}$ work done compressing/ compacting the ground
10 (a) (i) no free electrons (in plastic) or all electrons are bound/structural B1
(ii) (aluminium) is not magnet(ic) or cannot be magnetised B1
(iron) is a temporary/soft magnetic material or is not a permanent magnet B1
(b) (i) magnetic field/flux (mentioned) B1
(magnetic) field lines cut wire/solenoid/circuit or changing magnetic field/flux B1
voltage/e.m.f. induced B1
(ii) $\quad(V=) I R$ or 0.045×1.2 or 0.000045×1.2 C1
$5.4 \times 10^{-5} \mathrm{~V}$ or 0.054 mV A1
$(Q=)$ It or 0.045×0.14 or 0.000045×0.14 C1
$6.3 \times 10^{-6} \mathrm{C}$ or 0.0063 mC A1
(c) (i) larger or twice the current B1
(magnetic) field lines cut faster or (magnetic) field changes faster or twice the current R1

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge O Level - October/November 2015	5054	22

(ii) double the current for half the time or larger current for less time or product $I \times t$ is the same
(d) any two from:
insert S-pole (at same end)
insert (N -pole) at other end or from other direction
withdraw N -pole (from same end implied)
withdraw S-pole from other end or pass through completely

11 (a) 127 n (eutrons) and 82 p (rotons) B1
82 e (lectrons)
B1
electrons in orbit around nucleus/in shells around nucleus or around neutrons and protons or neutrons and protons in nucleus

B1
(b) (i) more protons and fewer neutrons or one more proton

C1
one more proton and one fewer neutron or neutron becomes proton (and electron/beta-particle)

A1
(ii)

	gamma $/ \gamma$	beta $/ \beta$
alpha $/ \alpha$		

reversed order 1 /2
correct order 2/2
(iii) (circular by eye) curve from beginning of field not with straight line B1
initially upward curve (in field)

B1
(c) (i) $\begin{aligned} & \text { (radiation) that is always present or occurs everywhere or cannot be } \\ & \text { eliminated or from environment/surroundings/natural sources/air }\end{aligned} \quad$ B1
(ii) two separate sources: rocks (e.g. radon/ground), outer space (e.g. cosmic rays), man-made sources (e.g. nuclear waste/fall-out)
(iii) 2 half-lives (implied) or $1 / 4$ seen or 76 (counts/minute)

C1
19 or 23 (counts/minute)
C1
35 counts/minute A1

