MARK SCHEME for the October/November 2015 series

5054 PHYSICS

5054/22

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2		2	Mark Scheme	Syllabus	Paper	
			Campridge O Level – October/November 2015	5054	22	
			Section A			
1	(a)	(V 2.4	= $)m/\rho$ or 10 600/6500/4100/2400 ÷ 1000 or 6.5 or 4.1 + m ³ /2.4 × 10 ⁶ cm ³		C1 A1	
	(b)	(i)	fuel/chemical (potential energy)		B1	
		(ii)	some to heat/thermal (energy) some to kinetic (energy of air or tractor)		B1 B1	
	(c)	(G/ 2.0	PE =) <i>mgh</i> or 2400 × 10 × 850)/2.04 × 10 ⁷ J		C1 A1	[7]
2	(a)	ang dis cor cha	y two from different lines of: tort/stretch/change in shape/squeezed/bends/deforms mpresses/change in size/volume/density/depth/height ange in temperature/gets hot(ter)/generates heat		B2	
	(b)	(i)	straight line from origin upward curve labelled/clear from limit of proportionality		B1 B1	
		(ii)	permanent extension or spring is longer than it was originally		B1	[5]
3	(a)	(p 3.2	=) <i>hρg</i> or 32 × 1000 × 10 2 × 10 ⁵ Pa		C1 A1	
	(b)	(i)	atmospheric pressure (is also acting on the surface of the water)		B1	
		(ii)	(<i>F</i> =) <i>pA</i> or $4.2 \times 10^5 \times 45$ or $3.2 \times 10^5 \times 45$ or 1.44×10^7 1.9/1.89 × 10^7 N		C1 A1	
	(c)	(ve (ve	ector) has a direction or scalar does not have a direction or ectors) may cancel or scalars cannot cancel		B1	[6]
4	(a)	wo	od is a poor/not a conductor or (good) insulator (of heat)		B1	
	(b)	(i)	vibrating atoms/ions/particles/molecules or electrons gain energy atoms/ions/particles/molecules hit free electrons or electrons trav	el (a long	B1	
			distance through the copper/saucepan) electrons hit/transfer energy to (distant) atoms/ions/molecules/pa	rticles	B1 B1	
		(ii)	hot/heated water expands/is less dense hot/heated water/less dense water rises (sets up) circulation/convection (current) or cold water sinks		B1 B1 B1	[7]

Ρ	age :	3	Mark Scheme	Syllabus	Pap	er
			Cambridge O Level – October/November 2015	5054	22	
5	(a)	(i)	(the property) varies with temperature		B1	
		(ii)	 any two from: volume (of gas/liquid) or density or length (of thread) voltage or current or e.m.f. resistance pressure (of gas) colour (quantity of) radiation emitted 			
			liquid crystal structure		B2	
	(b)	(i)	temperature of melting ice/where water freezes or water/ice mixtu	ıre	B1	
		(ii)	immerse thermometer in melting ice/at the ice point or boiling wate	r/at		
			or ice point and steam point marked/found (may be implied) divide the difference into 100 units/sections		B1 B1	[6]
6	(a)	the the	hey/molecules move/collide faster or gain <u>kinetic</u> energy hey/molecules collide with walls more often or harder pressure decreases arger volume (of gas) or they/molecules move further between collisions ewer collisions per unit time/reduced collision frequency (of molecules with			
	(b)	pre larç few				
		wa	II) or collide less often or pressure decreases to atmospheric pressur	e	B1	[5]
7	(a)	(<i>n</i> = 1.5	n =)sin <i>i</i> /sin r or sin 55°/sin 33° 5(040274)			
	(b)	(i)	angle of incidence greater than critical angle or denser to rarer med	lium	B1	
		(ii)	reflected ray in correct direction (by eye) to edge of block and no se (ign marked values)	econd TIR	B1	[4]
8	(a)	(P 620	=) <i>VI</i> or 230 × 27 00/6210W or 6.21/6.2kW		C1 A1	
	(b)	(i)	$1.1/1.12/1.1178 \times 10^7 J$		B1	
		(ii)	$6.21 \times 0.5 \times 23$ or $6.21 \times 30 \times 23$ or $3.1/3.105 \times 23$ 71/71.3/71.4/71.415 c or $0.71/0.714/0.71415$		C1 A1	[5]
						[45]

Page 4		4	Mark Scheme		Pap	er
			Cambridge O Level – October/November 2015	5054	22	2
			Section B			
9	(a)	12	Ν		B1	[1]
	(b)	(i)	0 or zero 12N or it is equal to the weight (<i>F</i> increases) as the speed increases		B1 B1 B1	
		(ii)	(gravitational) potential to thermal energy or to k.e. of air		B1	
		(iii)	$(KE =)\frac{1}{2}mv^{2}$ $\frac{1}{2} \times 1.2 \times 40^{2}$ 960 J		C1 C1 A1	[7]
	(c)	(i)	$(m =)E/l_{f}$ or Q/l_{f} or 960/330 2.9/2.91g or 2.9/2.91 × 10 ⁻³ kg		C1 A1	
		(ii)	any two from: ice is below 0 °C thermal energy transferred/lost (to ground/air) work done compressing/compacting the ground		B2	[4]
	(d)	an ma ma (in ice	y three from: plecules fixed in position or water molecules move around plecules vibrate or water molecules do not vibrate plecules in regular lattice or water molecules placed randomly teratomic) forces between ice molecules larger e molecules further apart		В3	[3] [15]
10	(a)	(i)	no free electrons (in plastic) or all electrons are bound/structural		B1	
		(ii)	(aluminium) is not magnet(ic) or cannot be magnetised (iron) is a temporary/soft magnetic material or is not a permanent m	nagnet	B1 B1	[3]
	(b)	(i)	magnetic field/flux (mentioned) (magnetic) field lines out wire/selencid/circuit er changing magnetic		B1	
			field/flux voltage/e.m.f. induced	,	B1 B1	
		(ii)	$(V =)IR \text{ or } 0.045 \times 1.2 \text{ or } 0.000045 \times 1.2$ $5.4 \times 10^{-5} \text{ V or } 0.054 \text{ mV}$ $(Q =)It \text{ or } 0.045 \times 0.14 \text{ or } 0.000045 \times 0.14$ $6.3 \times 10^{-6} \text{ C or } 0.0063 \text{ mC}$		C1 A1 C1 A1	[7]
	(c)	(i)	larger or twice the current (magnetic) field lines cut faster or (magnetic) field changes faster or twice the current		B1 B1	
			© Cambridge International Examinations 2015	T	eac udy The	hifyMe.con Smarter Way

Ра	ge :	5	Mark Scheme		Syllabus	Paper			
		Cambridge O Level – October/November 2015 5054			5054	22			
		(ii)	double the curre product $I \times t$ is the transformed set of the se	nt for half the time ne same	e or larger current	for less time o i	r	B1	[3]
	(d)	an ins ins wi wi	ny two from: sert S-pole (at same end) sert (N-pole) at other end or from other direction ithdraw N-pole (from same end implied) ithdraw S-pole from other end or pass through completely						[2]
									[15]
11	(a)	 (a) 127 n(eutrons) and 82 p(rotons) 82 e(lectrons) electrons in orbit around nucleus/in shells around nucleus or around neutrons and protons or neutrons and protons in nucleus (b) (i) more protons and fewer neutrons or one more proton one more proton and one fewer neutron or neutron becomes proton (and electron/beta-particle) 						B1 B1 B1	[3]
	(b)						'n	C1 A1	
		(ii)							
		()	reversed order 1/2						
			gamma/γ	beta/β	alpha/ α	correct	order 2/2	B2	
	 (iii) (circular by eye) curve from beginning of field not with straight line initially upward curve (in field) 					B1 B1	[6]		
	(c)	(c) (i) (radiation) that is always present or occurs everywhere or cannot be eliminated or from environment/surroundings/natural sources/air)e	B1		
		 (ii) two separate sources: rocks (e.g. radon/ground), outer space (e.g. cosmic rays), man-made sources (e.g. nuclear waste/fall-out))	B2			
		 (iii) 2 half-lives (implied) or ¼ seen or 76 (counts/minute) 19 or 23 (counts/minute) 35 counts/minute 				C1 C1 A1	[6]		
									[15]

