MARK SCHEME for the October/November 2015 series

5054 PHYSICS

5054/32
Paper 3 (Practical Test), maximum raw mark 30

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2015 series for most
Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some
Cambridge O Level components.
$®$ IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge O Level - October/November 2015	5054	32

1 (a)(i),(ii) $M=500 \mathrm{~g}$ with unit and $150 \mathrm{~cm}^{3} \leq V \leq 200 \mathrm{~cm}^{3}$ with unit seen here or in (b)(i). Allow cm^{3} or ml .
(iii) Do 2 or more fills of the measuring cylinder (and add the 2 together because the volume is greater than $100 \mathrm{~cm}^{3}$)
OR 2 values seen in (a) (ii).
(Beware of one reading taken from a line on the beaker)
(iv) Any two from

Read the volume from the bottom of the meniscus./
Eye level with the meniscus when the reading is taken./
Shake the masses whilst they are over the beaker./
Do repeat measurements and average the results provided
Repeats seen in (a)(ii).
(Answer must explain how, so avoid water sticking to the masses is not enough).
(b) (i) Volume of masses $=250 \mathrm{~cm}^{3}-V$ with unit seen here or in (a)(i).
And
(ii) Correct calculation of density with unit. (Ignore s.f.)

2 Throughout this question ignore missing arrows or arrows in the wrong direction on rays.
(a) End X of line labelled $X, A X$ at an angle of 30° to $A B$ by eye, line L perpendicular to $A B$ by eye and 3.0 cm from A.
(b) Reflected ray heading downwards and to the right with one point between $A X$ and $A B$ and the other point to the right of B.
(c) New line $A X$ at an angle of 60° to $A B$ and new position of the reflected ray to the right and towards the top of the page (should be parallel to $A X$).

Both rays projected backwards towards the left of the page.
θ in the range 55° to 65° from a generally correct diagram.

3 (a)(i),(ii) Sensible M and m in 10 g steps and within $\pm 20 \mathrm{~g}$ of M with unit seen somewhere and correctly evaluated ratio (allow 1 s.f.) with no unit.
(iii) Measured height above the bench in 2 places/ Aligned with horizontal object e.g. window frame.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge O Level - October/November 2015	5054	32

(b) $20.0 \mathrm{~cm} \leq h_{2}-h_{1} \leq 30.0 \mathrm{~cm}$ and $49.0 \mathrm{~cm} \leq l \leq 55.0 \mathrm{~cm}$, all measured to the nearest mm with unit seen on one of the quantities.

Correct substitution and R found (ignore unit).
θ in the range 15° to 35° with unit.

4 Preliminary Results

(a) (i) V_{0} recorded to 0.1 V or better with unit seen here or in (a)(ii) and in the range 3.0 V to 5.5 V .
(ii) V recorded to 0.1 V or better with unit seen here or in (a)(i) and in the range 1.5 V to 2.8 V .

Table

(b) Table with units for R and V and the results from (a)(ii). Included.
(Ignore missing or wrong units for $1 / \mathrm{V}$ or $1 / R$).
Correct calculation of $1 / V$ and $1 / R$ (check the point that is furthest from the drawn line).

In the following section V values must always follow the trend that as R increases V increases.
V for $2.7 \mathrm{k} \Omega$ resistor in the range 2.0 V to 4.4 V .
V correct for one series combination from the following three, $R=2.0 \mathrm{k} \Omega, 3.7 \mathrm{k} \Omega$ and $4.7 \mathrm{k} \Omega$.
V correct for two further series combinations from the
following three $R=2.0 \mathrm{k} \Omega, 3.7 \mathrm{k} \Omega$ and $4.7 \mathrm{k} \Omega$.

$R / \mathrm{k} \Omega$	Voltage range $/ \mathrm{V}$
2.0	1.8 to 4.0
3.7	2.1 to 4.8
4.7	2.2 to 5.0

V for $0.73 \mathrm{k} \Omega$ (parallel arrangement) in the range
1.1 V to 2.6 V and < (a)(ii) value.

B1
[6]

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge O Level - October/November 2015	5054	32

Graph

(c) Axes labelled with units and correct orientation.
Suitable scale, not based on 3, 6, 7 etc. with data occupying more than half the page in both directions. B1
(Allow origin to be included.)All data plotted and the two points furthest from the linechecked. This mark can only be scored if the scale iseasy to follow.B1
(Points must be within $1 / 2$ small square of the correct position)
Best fit fine line and fine points or crosses.
(Line thickness to be no greater than the thickest lines on the grid)

Calculations

(d) (i) Correct reading of the sides of the triangle used for the gradient determination from a reasonable scale.B1
Triangle uses more than half the drawn line. B1
(ii) Value of $V_{0} G$ in range $0.9(\mathrm{k} \Omega)$ to $1.1(\mathrm{k} \Omega)$ to $2 / 3$ s.f. (Ignore unit).

B1 [3]

