CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge Ordinary Level

MARK SCHEME for the May/June 2015 series

5070 CHEMISTRY

5070/42

Paper 4 (Alternative to Practical), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 ${\small \circledR}$ IGCSE is the registered trademark of Cambridge International Examinations.

P	age 2	2	Mark Scheme	Syllabus	Paper
			Cambridge O Level – May/June 2015	5070	42
1	(a)	(i)	silver/silvery/grey (1)		[1]
		(ii)	$2 \text{Mg} + \text{O}_2 \rightarrow 2 \text{MgO} (1)$		[1]
	(b)	-	drogen/H ₂ (1) os in flame/burning splint pops/lighted splint pops (1)		[2]
	(c)	(i)	MgO/magnesium oxide/solid/it disappears/dissolves or a colourless solution/colourless liquid (is formed) (1)		[1]
		(ii)	$MgO + H_2SO_4 \rightarrow MgSO_4 + H_2O (1)$		[1]
					[Total: 6]
2	(a)	(i)	32 38 44 all correct (1) (<u>20)</u> (<u>20)</u>		
			(<u>20)</u> (<u>20)</u> (<u>20)</u> <u>12</u> <u>18</u> <u>24</u> all correct (1)		[2]
		(ii)	exothermic (1)		[1]
	(b)	(i)	(60/12 = 5 13.3/1 = 13.3 26.7/16 = 1.67)		
			3 : 8 : 1 Empirical Formula = C_3H_8O (1) Reject C_3H_7OH		
			Molecular formula = C_3H_8O (1)		[2]
		(ii)	$\mathbf{X} = C_2H_5OH \text{ or } CH_3OH \text{ (1)}$ $\mathbf{Z} = C_4H_9OH \text{ or } C_5H_{11}OH \text{ (1)}$		
			Reasons: e.g. the more carbon atoms in the molecule/ the more carbon-carbon bonds/bigger M_r (reject A_r)/larger molecule the more the temperature (rise)/more heat given out or reverse argument exothermic (1)		re [3]
	(c)	(i)	propanoic (acid) /propionic (acid) $C_2H_5COOH/CH_3CH_2COOH/C_2H_5CO_2H/CH_3CH_2CO_2H$ (both name and structure required) (1)		[1]
		(ii)	(acidified) potassium manganate(VII) or KMnO ₄ or potassium permanganate (1) purple/pink to colourless/decolourised (1) OR (acidified) potassium dichromate or K ₂ Cr ₂ O ₇ (1) orange to green (1)		
			(in both cases, award of second mark is conditional on first ma	ark being o	btained) [2]

Mark Scheme

Page 2

Syllabus

Paper

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge O Level – May/June 2015	5070	42

(d) propyl propanoate (1)

 $\begin{array}{l} C_2H_5COOC_3H_7/\ C_2H_5COOC_2H_5\ CH_3/\ C_2H_5COOCH_2CH_2CH_3\\ CH_3CH_2COOC_3H_7/CH_3CH_2COOC_3H_7/\\ C_2H_5COO\ C_2H_5CH_3\ (1) \end{array}$

[2]

[Total: 13]

3 (d) (1) [Total: 1]

4 (d) (1) [Total: 1]

5 (c) (1) [Total: 1]

6 (b) (1) [Total: 1]

7 **(b)** (1) [Total: 1]

8 (a) 16.11 g (1) [1]

(b) filtration/decant(ation)/centrifugation (1) [1]

(c) colourless/green to purple/pink (1) [1]

(d) 32.3 39.4 47(.0) 1 mark for each correct row <u>or</u> column 6.9 25.4 25.8 25.2 to the benefit of the candidate (3)

Mean value = $25.3 (1) \text{ cm}^3$ [4]

(e) 0.000506 (1) **OR** ecf titre $\times 0.0200/1000$ [1]

(f) 0.00253 (1) **OR** ecf (e) \times 5

(g) (i) 0.0253 (1) **OR** ecf (f) \times 10 [1]

(ii) 1.42 (1) g **OR** ecf (g)(i) \times 56 [1]

(h) 8.79 (1) OR ecf (g)(ii)/(a) $\times 100$ [1]

Pa	ge 4	4	Mark Scheme Cambridge O Level – May/June 2015	Syllabus 5070	Paper 42	
<u> </u>	(i)	(i)	$(NH_4)_2SO_4: 28/132 \times 100 \ (1) = 21.2\% \ (1)$		[2]	
		(ii)	(ii) ammonium nitrate/urea/ammonia/ammonium phosphate/potassium nitrate etc. (1			
				I	Total: 15]	
9	(a)	trar	nsition metal/element (ion or compound) absent (1)		[1]	
	(b)	(i)	white ppt (1)			
		(ii)	soluble (in excess)/dissolves/(colourless)solution (1)		[2]	
	(c)	(i)	white ppt AND (ii) soluble (in excess)/dissolves/(colourless) solut	ion (1)	[1]	
	(d)	M2 M3	(aq) NaOH/sodium hydroxide/ (1) A1/aluminium (foil)/Devarda's alloy (1) warm/heat/boil (1) may appear in observations ammonia/NH ₃ OR gas turns litmus blue (1)			
			L OW wn ring test: conc. (1) sulfuric acid/H ₂ SO ₄ (1) iron(II) sulfate/FeSO ₄	₄ (1) brown r	ing (1) [4]	
					[Total: 8]	
10	(a)		3, 0.73, 0.81, 0.81 (1) 6, 0.81, 0.81, 0.81 (1)		[2]	
	(b)	Ca	$CO_3 + 2HCl \rightarrow CaCl_2 + H_2O + CO_2 (1)$		[1]	
	(c)	esc	bon dioxide/gas (evolved which) capes (from the apparatus)/is lost (from the noved (from the apparatus)/is released into the air/is liberated to the	,	[1]	
	(d)	all _l	points plotted correctly (1)			
			smooth curves through the points (within one small square) mark for each curve (2)		[3]	
	(e)	(i)	0.56 (1)g		[1]	
		(ii)	$87.50-0.60$ (value from candidates graph to \pm half a small square	e) = 86.9(0) (1)g [1]	
	(f)	incı	rease rate/increase speed/faster (1) reased surface area/increased area of contact/more contact ween marble and acid (1)		[2]	

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge O Level – May/June 2015	5070	42

(g) Answers must be consequential on equation in (b) (unless equation is given as part of answer)

For a 1:2 mole ratio

 $0.036/2 = 0.018 \text{ mol CaCO}_3$ $0.018 \times 100 = 1.8 \text{ (g) (1)}$ $10 - 1.8 = 8.2 \text{ (g) CaCO}_3 \text{ (1)}$

E.c.f for a 1:1 mole ratio

$$0.036 \times 100 = 3.6 (g) (1)$$

 $10 - 3.6 = 6.4 (g) (1)$

[2]

[Total: 13]

