

Cambridge International Examinations

Cambridge Ordinary Level

CHEMISTRY 5070/12

Paper 1 Multiple Choice May/June 2017

1 hour

Additional Materials: Multiple Choice Answer Sheet

Soft clean eraser

Soft pencil (type B or HB is recommended)

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.

DO NOT WRITE IN ANY BARCODES.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

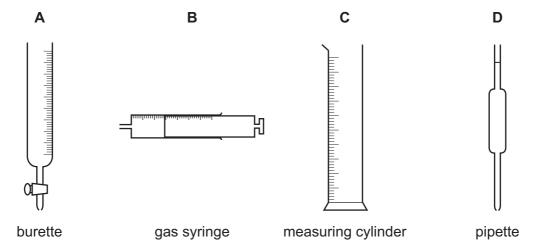
Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

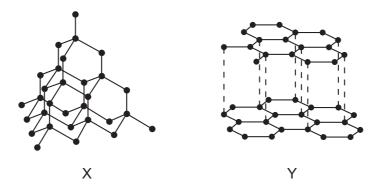
Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done in this booklet.

A copy of the Periodic Table is printed on page 16.


Electronic calculators may be used.


International Examinations

1 The diagram shows four pieces of apparatus that are used to measure the volume of a gas or liquid.

Which piece of apparatus should always be filled to the same level?

2 The diagrams show the structures of two forms of carbon.

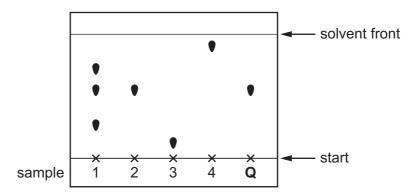
Which of X and Y conduct electricity?

	Х	Y
Α	✓	✓
В	✓	X
С	X	✓
D	X	X

3 An aqueous solution of zinc chloride is tested by adding reagents.

Which observation is correct?

	reagent added to zinc chloride (aq)	observations
Α	acidified aqueous barium nitrate	forms a white precipitate
В	aqueous ammonia	forms a white precipitate, soluble in excess of the reagent
С	aqueous sodium hydroxide	forms a white precipitate, insoluble in excess of the reagent
D	powdered copper	forms a grey precipitate


- 4 Which statement about the particles ${}_{9}^{19}F^{-}$, ${}_{10}^{20}Ne$ and ${}_{11}^{23}Na^{+}$ is correct?
 - **A** They all contain more electrons than protons.
 - **B** They all contain more neutrons than protons.
 - **C** They all contain the same number of electrons.
 - **D** They all contain the same number of protons.
- **5** The table shows some properties of four substances.

Which substance is an ionic compound?

	melting point/°C	conducts electricity when solid	dissolves in water	conducts electricity in aqueous solution
Α	-102	x	✓	✓
В	801	x	✓	✓
С	842	✓	✓	✓
D	3000	✓	X	X

6 Four samples are spotted onto chromatography paper. It is known that one of these samples is pure compound **Q**. A separate sample of pure compound **Q** is also spotted onto the paper. The paper is placed in a solvent.

The diagram shows the chromatogram produced.

Which statement is correct?

- A Sample 2 has travelled the furthest and sample 3 is pure compound **Q**.
- **B** Sample 3 has travelled the furthest and sample 2 is pure compound **Q**.
- **C** Sample 4 has travelled the furthest and sample 1 is pure compound **Q**.
- **D** Sample 4 has travelled the furthest and sample 2 is pure compound **Q**.
- 7 How many of the molecules shown contain only one covalent bond?

 Cl_2 H_2 HCl N_2 O_2 A 2 B 3 C 4 D 5

- **8** Which statements about sulfur and its compounds are correct?
 - 1 Sulfur is in Group VI of the Periodic Table and has six outer shell electrons.
 - 2 In hydrogen sulfide, H₂S, sulfur shares one electron with each hydrogen atom.
 - 3 Sulfur dioxide is used as a bleach.

A 1, 2 and 3 **B** 1 and 2 only **C** 1 and 3 only **D** 2 and 3 only

9 50.0 cm³ of 0.10 mol/dm³ silver nitrate, AgNO₃, is added to 150.0 cm³ of 0.05 mol/dm³ sodium chloride, NaC *l*, in a beaker.

As well as solid silver chloride, what is present in the beaker after reaction?

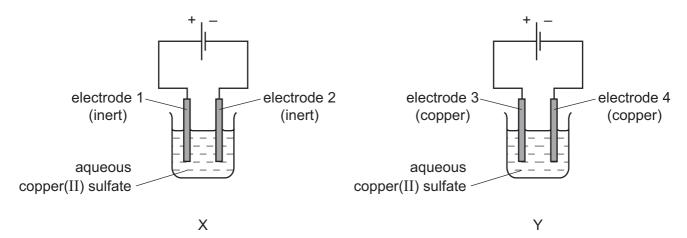
- A aqueous silver nitrate and aqueous sodium nitrate
- B aqueous sodium chloride and aqueous sodium nitrate
- **C** aqueous sodium chloride only
- **D** aqueous sodium nitrate only
- **10** Nitrogen monoxide and oxygen react to form nitrogen dioxide.

$$2NO(g) \ + \ O_2(g) \ \rightarrow \ 2NO_2(g)$$

What is the maximum volume of nitrogen dioxide that could be obtained when 1 dm³ of nitrogen monoxide reacts with 2 dm³ of oxygen?

- $\mathbf{A} \quad 1 \, \mathrm{dm}^3$
- \mathbf{B} 2 dm³
- \mathbf{C} 3 dm³
- \mathbf{D} 4 dm³
- 11 Dilute sulfuric acid is electrolysed between inert electrodes.

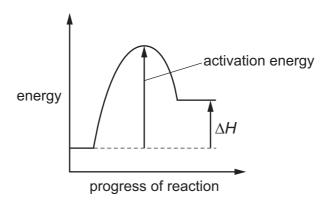
Which statements are correct?


- 1 Hydrogen is released at the negative electrode.
- 2 Oxygen is released at the positive electrode.
- 3 Sulfur dioxide is released at the positive electrode.
- 4 The acid becomes more concentrated.
- **A** 1, 2 and 4
- **B** 1 and 2 only
- **C** 2 and 3
- **D** 3 and 4
- **12** Caesium, Cs, is in the same group of the Periodic Table as sodium.

Which products are obtained from the electrolysis of concentrated aqueous caesium chloride?

	product at negative electrode	solution remaining
Α	caesium	hydrochloric acid
В	chlorine	caesium hydroxide
С	hydrogen	caesium hydroxide
D	hydrogen	hydrochloric acid

13 The diagrams show the apparatus for the electrolysis of aqueous copper(II) sulfate.


In experiment X both electrodes are inert. In experiment Y both electrodes are made of copper.

On which electrodes is solid metal deposited?

- **A** 1 and 2
- **B** 1 and 3
- **C** 2 and 4
- **D** 3 and 4

14 The energy profile diagram for the **forward** direction of a reversible reaction is shown.

For the **reverse** reaction, which row correctly shows the sign of the activation energy and the type of enthalpy change?

	sign of activation energy	type of enthalpy change
Α	negative	endothermic
В	negative	exothermic
С	positive	endothermic
D	positive	exothermic

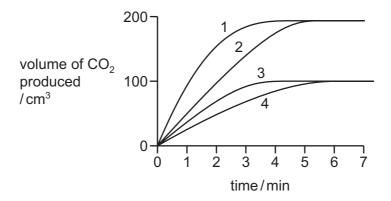
15 The formation of liquid water from hydrogen and oxygen may occur in three stages.

1
$$2H_2(g) + O_2(g) \rightarrow 4H(g) + 2O(g)$$

2
$$4H(g) + 2O(g) \rightarrow 2H_2O(g)$$

$$3 \quad 2H_2O(g) \rightarrow 2H_2O(l)$$

Which stages would be exothermic?


- **A** 1, 2 and 3
- **B** 1 and 2 only
- C 2 and 3 only
- **D** 2 only

16 In four separate experiments, 1, 2, 3 and 4, nitric acid was added to excess marble chips and the volume of carbon dioxide formed was measured.

In all four experiments the same volume of nitric acid was used.

Its concentration, or temperature, or both concentration and temperature, were changed.

The results of the experiments are shown on the graph.

Which statement is correct?

- **A** A lower concentration of acid was used in experiment 3 than in experiment 1.
- **B** Experiment 4 was faster than experiment 3.
- **C** The acid used in experiment 2 was of a lower concentration than in experiment 1.
- **D** The temperature of the acid was the same in experiments 1 and 2.
- 17 The equation shows the formation of sulfur trioxide in the contact process.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$
 $\Delta H = -196 \text{ kJ/mol}$

What would **decrease** the yield of sulfur trioxide?

- A addition of more oxygen
- B an increase in pressure
- **C** an increase in temperature
- **D** removal of sulfur trioxide from the reaction chamber

18 Zinc reacts with dilute sulfuric acid.

$$Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$$

From this equation, what can be deduced about the reaction?

- A It is a redox reaction.
- **B** It is exothermic.
- C Zinc is acting as a base.
- **D** Zinc is acting as a catalyst.
- 19 Consider the three reactions.
 - 1 reaction between ammonium chloride and calcium hydroxide
 - 2 ethane burning in air
 - 3 reaction between ethanoic acid and ethanol

What is true for all three reactions?

- A Carbon dioxide is formed.
- **B** Neutralisation takes place.
- **C** Oxidation takes place.
- **D** Water is formed.
- 20 Which statement about weak acids is correct?
 - **A** They are partially ionised.
 - **B** They do not react with metals.
 - **C** They do not react with strong alkalis.
 - **D** Their solutions have pH values in the range 0 to 2.
- 21 Which gas dissolves in water to give a solution with a pH greater than 7?
 - A ammonia
 - B carbon dioxide
 - C nitrogen dioxide
 - D sulfur dioxide

22 Element X forms an oxide of formula X₂O₅.

In which group of the Periodic Table is X likely to be found?

- A Group II
- B Group III
- C Group V
- **D** Group VIII
- 23 Element M is a typical transition metal.

Which property will it not have?

- A a low melting point
- **B** coloured compounds
- C good electrical conductivity
- **D** variable oxidation states
- 24 An atom of element E forms a white oxide of formula EO.

What is E?

- A argon
- **B** calcium
- C copper
- **D** potassium
- **25** The table shows the proton numbers of four elements.

element	Q	R	Т	Z
proton number	9	11	17	19

Which statement is correct?

- A Q is a metal.
- **B** Q is more reactive than T.
- **C** R is more reactive than Z.
- **D** T and Z are in the same period.

26 The results of experiments involving four metals, W, X, Y and Z, and their ions are shown.

$$Y(s) + Z^{+}(aq) \rightarrow Y^{+}(aq) + Z(s)$$

$$W(s) + X^{+}(aq) \rightarrow no reaction$$

$$Z(s) + X^{+}(aq) \rightarrow Z^{+}(aq) + X(s)$$

What is the order of reactivity of the four metals, most reactive to least reactive?

$$A \quad W \to X \to Y \to Z$$

$$\textbf{B} \quad X \to W \to Z \to Y$$

$$\textbf{C} \quad Y \to Z \to X \to W$$

$$\textbf{D} \quad Z \to Y \to W \to X$$

27 Metals have a structure of positive ions in a 'sea of electrons'. Metals are malleable because it is possible to force the ions to slide over each other.

The alloy brass is1..... malleable than pure copper and than pure zinc.

Brass is2..... to conduct electricity.

Which words correctly complete gaps 1 and 2?

	1	2
Α	less	unable
В	less	able
С	more	unable
D	more	able

- 28 Which two substances are removed from the bottom of a blast furnace?
 - 1 coke
 - 2 iron
 - 3 limestone
 - 4 slag
 - 1 and 3
- **B** 1 and 4
- **C** 2 and 3 **D** 2 and 4

29 Aluminium is used in the manufacture of aeroplanes.

	Wh	at is a property o	f alı	uminium	and is a	also	a reas	on for this	s us	e?	
	Α	It has a low den	sity								
	В	It is a good cond	duc	tor of ele	ectricity.						
	С	It is a poor cond	luct	or of hea	at.						
	D	It is covered in a	an u	ınreactiv	e layer (of al	luminiu	m carbor	ıate.		
30	Hov	v can the reactio	n be	etween r	nitrogen	and	l hydro	gen be de	escri	ibed?	
	Α	a displacement	rea	ction							
	В	a neutralisation	rea	ction							
	С	a precipitation r	eac	tion							
	D	a reversible rea	ctio	n							
31	Bot	tled fruit juice ma	ıy h	ave sma	ıll amouı	nts (of sulfu	r dioxide	add	ed.	
	Wh	at is the purpose	of t	this?							
	Α	to adjust the aci	dity	of the fr	uit juice						
	В	to kill any bacte	ria p	oresent							
	С	to improve the f	lavo	our of the	e fruit jui	се					
	D	to neutralise an	y all	kalis pre	sent						
32	Dis	solved substance	es ir	n water d	can caus	se e	utrophi	cation.			
	Hov	v many of the ior	าร ร	hown ca	use this	effe	ect?				
				Cl ⁻	CO ₃ ²⁻		Na⁺	NO ₃ ⁻	F	PO ₄ 3-	
	A	1	В								
33	Wh	ich list contains o	only	gases tl	hat are a	alwa	ys pre	sent in ur	ıpoll	uted air	?
	Α	oxygen, nitroge	n, c	arbon di	oxide, a	rgor	n, carbo	on monox	ide,	nitroge	n dioxide
	В	oxygen, nitroge	n, c	arbon di	oxide, a	rgor	n, neon				
	С	oxygen, nitroge	n, c	arbon di	oxide, n	itrog	gen dio	xide, ozo	ne		
	D	oxygen, nitroge	n, c	arbon m	onoxide	, me	ethane,	sulfur die	oxid	е	

34	One	e mole of each a	alkan	e undergoes co	mple	ete combustion.		
	Wh	ich alkane will p	rodu	ce seven moles	of p	roducts?		
	Α	CH ₄	В	C_2H_6	С	C ₃ H ₈	D	C ₄ H ₁₀
35	Eth	anoic acid is for	mea	wnen etnanoi is	rea	cted with acidifie	ea pc	otassium manganate(VII).
	Wh	at is the name o	of this	s process?				
	A	combustion						
	В	condensation						
	С	oxidation						
	D	polymerisation						
20	Th a			wad V ia abawwa				
36	ine	structure of co	mpo	und X is shown.				
				CH ₃ –	CH ₂ -	-CH ₂ -CH ₂ -OH		
	Wh	ich statement is	not	correct?				
	Α	X is an alcohol	bec	ause it contains	an –	OH group.		
	В	X is an isomer	of pr	opanol.				
	С	X would burn in	n air	to form carbon o	dioxid	de and water.		
	D	X would have a	a hig	her boiling point	thar	ethanol.		
	٧ در -			d th d	4	.4-:	4	11 11
37	Απε			·	t cor	itain more carbo	n ato	oms than the reactant?
	Α	ethanol to etha						
	В	ethanol to ethy		anoate				
	С	ethene to etha						
	D	ethene to etha	nol					

38 Molecules 1–4 are unbranched hydrocarbons.

- 1 C₁₀H₂₂
- 2 C₁₀H₂₀
- 3 C₉H₂₀
- 4 C₈H₁₆

Which row correctly identifies these hydrocarbons as alkanes or alkenes?

	alkane	alkene
Α	1 and 2	3 and 4
В	1 and 3	2 and 4
С	1 and 4	2 and 3
D	2 and 3	1 and 4

39 Which polymer contains only three different elements?

- A protein
- **B** poly(ethene)
- **C** poly(propene)
- **D** starch

40 Which statement about macromolecules is correct?

- **A** Nylon and *Terylene* are both polyesters.
- **B** Proteins and nylon have the same monomer units.
- **C** Proteins have the same amide linkages as nylon.
- **D** Terylene and fats are esters but with different linkages.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of Elements

	=	F 5	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	첫	krypton 84	54	×	xenon 131	98	R	radon								
	₹			6	ட	fluorine 19	17	Cl	chlorine 35.5	35	ğ	bromine 80	53	Н	iodine 127	85	Ą	astatine -								
	>			8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	Б	tellurium 128	84	Ъо	molod –	116	^	livemorium _					
	>			7	Z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	<u>.</u>	bismuth 209								
	≥			9	O	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Εl	flerovium					
	≡			5	Ω	boron 11	13	Ρſ	aluminium 27	31	Ga	gallium 70	49	I	indium 115	81	lΤ	thallium 204								
										30	Zu	zinc 65	48	ဥ	cadmium 112	80	Ŗ	mercury 201	112	S	copernicium -					
										29	Cn	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium					
Group															28	z	nickel 59	46	Pd	palladium 106	78	귙	platinum 195	110	Ds	darmstadtium -
Gre										27	ဝိ	cobalt 59	45	R	rhodium 103	22	Ir	iridium 192	109	Mt	meitnerium -					
		- I	hydrogen 1											Ru	ruthenium 101	9/	SO	osmium 190	108	Hs	hassium -					
										25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium –					
					pol	ass						chromium 52		Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -					
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	gN	niobium 93	73	<u>a</u>	tantalum 181	105	Сb	dubnium —					
					atc	rek				22	i=	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	꿆	rutherfordium -					
										21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids						
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	99	Ba	barium 137	88	Ra	radium					
	_			က	=	lithium 7	11	Na	sodium 23	19	¥	potassium 39	37	&	rubidium 85	55	Cs	caesium 133	87	ᇁ	francium -					

77	lutetium 175	103	۲	lawrencium	I
	ytterbium 173				
e9 Tu	thulium 169	101	Md	mendelevium	1
88 F	erbium 167	100	Fm	fermium	-
⁷⁹	holmium 165	66	Es	einsteinium	I
99 2	dysprosium 163	86	ర్	califomium	-
e5 Th	terbium 159	26	益	berkelium	Ι
64 Gd	gadolinium 157	96	Cm	curium	I
63 FL	europium 152	92	Am	americium	1
Sm.	samarium 150	94	Pu	plutonium	_
Pm	promethium -	93	dΝ	neptunium	_
09 Z	neodymium 144	92	\supset	uranium	238
59 P	praseodymium 141	91	Ра	protactinium	231
88 C	cerium 140	06	Ч	thorium	232
57	lanthanum 139	68	Ac	actinium	_

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.).