MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

9709 MATHEMATICS

9709/31

Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9709	31

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √^h implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9709	31

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Pa	ge 4	Mark Scheme: Teachers' version	Syllabus	Paper	,
			GCE AS/A LEVEL – May/June 2012	9709	31	
1	Stat Use Obt	e or imply correct m ain 3.81	$4-2^x = -10$ and 10 tethod for solving equation of form $2^x = a$		B1 M1 A1	[3]
2	(i)	<u>Either</u> Or	Obtain correct (unsimplified) version of x or x^2 term from (Obtain $1 + 2x$ Obtain $+ 6x^2$ Differentiate and evaluate f(0) and f'(0) where f'(x) = $k(1 - x)$ Obtain $1 + 2x$ Obtain $1 + 2x$ Obtain $+ 6x^2$	$(1-4x)^{\frac{1}{2}}$ $(4x)^{-\frac{3}{2}}$	M1 A1 A1 M1 A1 A1	[3]
	(ii)	Combine Obtain 5	both x^2 terms from product of $1 + 2x$ and answer from part of	i)	M1 A1	[2]
3	(i)	Substitute zero, or e Obtain <i>a</i>	e $x = 2$ and equate to zero, or divide by $x - 2$ and equate consequivalent = 4	stant remainder to	M1 A1	[2]
	(ii)	(a) Find equi Obta State	I further (quadratic or linear) factor by division, inspection o valent ain $x^2 + 2x - 8$ or $x + 4$ e $(x - 2)^2(x + 4)$ or equivalent	r factor theorem or	M1 A1 A1	[3]
		(b) State State	e any two of the four (or six) roots e all roots ($\pm \sqrt{2}$, $\pm 2i$), provided two are purely imaginary		B1√ [^] B1√ [^]	[2]
4	(i)	Either	Expand $(1 + 2i)^2$ to obtain $-3 + 4i$ or unsimplified equivaler Multiply numerator and denominator by $2 - i$ Obtain correct numerator $-2 + 11i$ or correct denominator 5	ıt	B1 M1 A1	
		<u>Or</u>	Obtain $-\frac{2}{5} + \frac{11}{5}i$ or equivalent Expand $(1 + 2i)^2$ to obtain $-3 + 4i$ or unsimplified equivalent Obtain two equations in x and y and solve for x or y	ıt	A1 B1 M1	
			Obtain final answer $x = -\frac{2}{5}$ Obtain final answer $y = \frac{11}{5}$		A1 A1	[4]
	(ii)	Draw a c Show cer Draw cire	ircle htre at relatively correct position, following their <i>u</i> cle passing through the origin		M1 A1√ A1	[3]

	Page 5		Mark Scheme: Teachers' version Syllabus		Paper	
			GCE AS/A LEVEL – May/June 2012	9709	31	
5	(i)	Different	iate to obtain $4\cos\frac{1}{2}x - \frac{1}{2}\sec^2\frac{1}{2}x$		B1	
		Equate to	zero and find value of $\cos\frac{1}{2}x$		M1	
		Obtain co	$\cos \frac{1}{2}x = \frac{1}{2}$ and confirm $\alpha = \frac{2}{3}\pi$		A1	[3]
	(ii)	Integrate	to obtain $-16\cos\frac{1}{2}x\dots$		B1	
		$\dots + 2 \ln \theta$	$\cos\frac{1}{2}x$ or equivalent		B1	
		Using lim	hits 0 and $\frac{2}{3}\pi$ in $a\cos\frac{1}{2}x + b\ln\cos\frac{1}{2}x$		M1	
		Obtain 8	$+2\ln\frac{1}{2}$ or exact equivalent		A1	[4]
6	(i)	Obtain 2	$y \frac{\mathrm{d}y}{\mathrm{d}x}$ as derivative of y^2		B1	
		Obtain –	$4y - 4x \frac{dy}{dx}$ as derivative of $-4xy$		B1	
		Substitute	$e x = 2$ and $y = -3$ and find value of $\frac{dy}{dx}$			
		(depender	nt on at least one B1 being earned and $\frac{d(45)}{dx} = 0$)		M1	
		Obtain $\frac{12}{7}$	² / ₋ or equivalent		A1	[4]
	(ii)	Substitute	$\frac{dy}{dx} = 1$ in an expression involving $\frac{dy}{dx}$, x and y and obtain $\frac{dy}{dx}$	ay = bx	M1	
		Obtain y Uses $y = 1$	= x or equivalent x in original equation and demonstrate contradiction		A1 A1	[3]
7	Sep	arate varia	bles correctly and attempt integration on at least one side		M1	
	Obt	$ain \frac{1}{3}y^3$ o	r equivalent on left-hand side		A1	
	Use	integration	n by parts on right-hand side (as far as $axe^{3x} + \int be^{3x} dx$)		M1	
	Obt	ain or impl	ly $2xe^{3x} + \int 2e^{3x} dx$ or equivalent		A1	
	Obt	ain $2xe^{3x}$	$-\frac{2}{3}e^{3x}$		A1	
	Sub find	stitute $x =$ l the value	0, $y = 2$ in an expression containing terms Ay^2 , Bxe^{3x} , Ce^{3x} , v of c	where ABC $\neq 0$, and	d M1	
	Obt	$ain \frac{1}{3}y^3 =$	$2xe^{3x} - \frac{2}{3}e^{3x} + \frac{10}{3}$ or equivalent		A1	
	Sub	stitute $x =$	0.5 to obtain $y = 2.44$		A1	[8]

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9709	31

			$\left(\begin{array}{c}2\end{array}\right)$		
8 (i)	(i)	Either	Obtain $\pm \begin{bmatrix} -1 \\ 15 \end{bmatrix}$ for vector <i>PA</i> (where <i>A</i> is point on line) or equivalent	B1	
			(-13) Use scalar product to find cosine of angle between <i>PA</i> and line	M1	
			Obtain $\frac{42}{2}$ or equivalent	A1	
			$\sqrt{14 \times 230}$		
			Use trigonometry to obtain $\sqrt{104}$ or 10.2 or equivalent	A1	
			$\left(\begin{array}{c}2n+2\end{array}\right)$		
		<u>Or 1</u>	Obtain $\pm \begin{pmatrix} n-1\\ 3n-15 \end{pmatrix}$ for <i>PN</i> (where <i>N</i> is foot of perpendicular)	B1	
			Equate scalar product of <i>PN</i> and line direction to zero Or equate derivative of PN^2 to zero		
			<u>Or</u> use Pythagoras' theorem in triangle <i>PNA</i> to form equation in <i>n</i> Solve equation and obtain $n = 3$	M1 A1	
			Obtain $\sqrt{104}$ or 10.2 or equivalent	Δ1	
			$\begin{pmatrix} 2 \end{pmatrix}$	AI	
		<u>Or 2</u>	Obtain $\pm \begin{bmatrix} -1 \\ -15 \end{bmatrix}$ for vector <i>PA</i> (where <i>A</i> is point on line)	B1	
			Evaluate vector product of <i>PA</i> and line direction $\begin{pmatrix} 12 \end{pmatrix}$	M1	
			Obtain $\pm \begin{pmatrix} -36\\ -4 \end{pmatrix}$	A1	
			Divide modulus of this by modulus of line direction and obtain $\sqrt{104}$ or 10.2 or		
			equivalent	A1	
			$\begin{pmatrix} 2 \end{pmatrix}$		
		<u>Or 3</u>	Obtain $\pm \begin{pmatrix} -1 \\ -15 \end{pmatrix}$ for vector <i>PA</i> (where <i>A</i> is point on line)	B1	
			Evaluate scalar product of <i>PA</i> and line direction to obtain distance <i>AN</i>	M1	
			Obtain $3\sqrt{14}$ or equivalent	A1	
			Use Pythagoras' theorem in triangle <i>PNA</i> and obtain $\sqrt{104}$ or 10.2 or		
			equivalent	A1	
		<u>Or 4</u>	Obtain $\pm \begin{bmatrix} -1 \\ -15 \end{bmatrix}$ for vector <i>PA</i> (where <i>A</i> is point on line)	B1	
			Use a second point <i>B</i> on line and use cosine rule in triangle <i>ABP</i> to find angle <i>A</i>		
			or angle $B \text{ or}$ use vector product to find area of triangle	M1	
			Obtain correct answer (angle $A = 42.25$)	Al	Г 4 7
			Use trigonometry to obtain $\sqrt{104}$ or 10.2 or equivalent	AI	[4]

Page 7		Mark Scheme: Teachers' version	Syllabus	Paper	
		GCE AS/A LEVEL – May/June 2012	9709	31	
	(ii) <u>Either</u> Use scalar product to obtain a relevant equation in a, b, c, e.g. $2a + b + 3c = 0$ or				
		2a - b - 15c = 0		M1	
		State two correct equations in <i>a</i> , <i>b</i> and <i>c</i>		A1√ [*]	
		Solve simultaneous equations to obtain one ratio Obtain $a : b : a = -2 : 0 : -1$ or equivalent		MI	
		Obtain a . $v : c = -3 : 9 : -1$ of equivalent Obtain equation $-3x + 9y - z = 28$ or equivalent		A1 A1	
	<u>Or 1</u>	Calculate vector product of two of $\begin{pmatrix} 2\\1\\3 \end{pmatrix}$, $\begin{pmatrix} 2\\-1\\-15 \end{pmatrix}$ and $\begin{pmatrix} 8\\2\\-6 \end{pmatrix}$	or equiv	M1	
		Obtain two correct components of the product (-3)		A1√	
		Obtain correct $\begin{bmatrix} 9\\ -1 \end{bmatrix}$ or equivalent		A1	
		Substitute in $-3x + 9y - z = d$ to find <i>d</i> or equivalent		M1	
	0.0	Obtain equation $-3x + 9y - z = 28$ or equivalent		A1	
	<u>Or 2</u>	Form a two-parameter equation of the plane $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$		MI	
		Obtain $\mathbf{n} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ or equivalent		۸.1.≜	
		$\int \frac{1}{\sqrt{1-\frac{1}{2}}} \frac{1}{1-$		AI¥	
		$\begin{pmatrix} -4 \end{pmatrix}$ $\begin{pmatrix} 3 \end{pmatrix}$ $\begin{pmatrix} -13 \end{pmatrix}$		A 1	
		State three equations in x, y, z, s, t Eliminate s and t		M1	
		Obtain equation $3x - 9y + z = -28$ or equivalent		A1	[5]
9	State or imply State or obtain Use correct n Obtain $B = 1$ Obtain $C = -2$ Obtain $2x + -2$	y form $A + \frac{B}{2x+1} + \frac{C}{x+2}$ In $A = 2$ method for finding B or C $\frac{1}{2}\ln(2x+1) - 3\ln(x+2)$ [Deduct B1 ⁴ for each error or omission]	on]	B1 B1 A1 A1 B3√ [*]	
	Substitute lin	hits in expression containing $a\ln(2x+1) + b\ln(x+2)$		M1	
	Show full and	d exact working to confirm that $8 + \frac{1}{2}\ln 9 - 3\ln 6 + 3\ln 2$, or a	n equivalent		
	expression, si	implifies to given result 8 – ln 9		A1	[10]
	[SR:If A om in (ii).]	itted from the form of fractions, give B0B0M1A0A0 in (i);	, B0√B1√B1√M1A	A 0	
	[SR:For a so	lution starting with $\frac{M}{2x+1} + \frac{Nx}{x+2}$ or $\frac{Px}{2x+1} + \frac{Q}{x+2}$, give E	80B0M1A0A0 in (i);	
	B1√B1√	B1, if recover correct form, M1A0 in (ii).]			
	[SR:For a so	lution starting with $\frac{B}{2x+1} + \frac{Dx+E}{x+2}$, give M1A1 for one of	B = 1, D = 2, E =	- 1	
	and A1	or the other two constants; then give B1B1 for $A = 2$, $C = -3$ Fr + G	·]		
	[SR: For a solution starting with $\frac{Fx+G}{2x+1} + \frac{C}{x+2}$, give M1A1 for one of $C = -3$, $F = 4$, $G = 3$			= 3	
	and A1	for the other constants or constant; then give B1B1 for $A = 2$,	R = 1		

© University of Cambridge International Examinations 201

Page 8		ge 8	Mark Scheme: Teachers' version	Syllabus	Paper	,
			GCE AS/A LEVEL – May/June 2012	9709	31	
10	(i)	Use corre Obtain co Obtain <i>kt</i> Confirm g	ct identity for tan 2x and obtains $at^4 + bt^3 + ct^2 + dt = 0$, where the transmission of trans	ere <i>b</i> may be zero	M1 A1 M1 A1	[4]
	(ii)	Consider Justify the	sign of $t - \sqrt[3]{t + 0.8}$ at 1.2 and 1.3 or equivalent e given statement with correct calculations (-0.06 and 0.02)		M1 A1	[2]
	(iii)	Use the it Obtain fin Show suf (1.2755, 1	erative formula correctly at least once with $1.2 < t_n < 1.3$ hal answer 1.276 ficient iterations to justify answer or show there is a change 1.2765)	of sign in interval	M1 A1 A1	[3]
	(iv)	Evaluate Obtain -2 State $-\pi$, [SR If A0	tan ⁻¹ (answer from part (iii)) to obtain at least one value 2.24 and 0.906 0 and π 0, B0, allow B1 for any 3 roots]		M1 A1 B1	[3]

