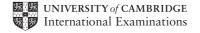
#### UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

# MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

## 9709 MATHEMATICS

9709/32


Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.





| Page 2 | Mark Scheme: Teachers' version | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE AS/A LEVEL – May/June 2012 | 9709     | 32    |

### **Mark Scheme Notes**

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
  B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.



| Page 3 | Mark Scheme: Teachers' version | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE AS/A LEVEL – May/June 2012 | 9709     | 32    |

The following abbreviations may be used in a mark scheme or used on the scripts:

| AEF | Any Equivalent Form (of answer is equally acceptable)                                                                                                                                   |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AG  | Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)                                                     |
| BOD | Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)                                                                                                  |
| CAO | Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)                                                                                             |
| CWO | Correct Working Only – often written by a 'fortuitous' answer                                                                                                                           |
| ISW | Ignore Subsequent Working                                                                                                                                                               |
| MR  | Misread                                                                                                                                                                                 |
| PA  | Premature Approximation (resulting in basically correct work that is insufficiently accurate)                                                                                           |
| sos | See Other Solution (the candidate makes a better attempt at the same question)                                                                                                          |
| SR  | Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance) |

## **Penalties**

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \"" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.



| Page 4 | Mark Scheme: Teachers' version | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE AS/A LEVEL – May/June 2012 | 9709     | 32    |

| EITH | IER: Use law of the logarithm of a power or quotient and remove logarithms                                        | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Obtain a 3-term quadratic equation $x^2 - x - 3 = 0$ , or equivalent                                              | <b>A</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | * * *                                                                                                             | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | Obtain answer 2.30 only                                                                                           | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| OR1: | Use an appropriate iterative formula, e.g. $x_{n+1} = \exp\left(\frac{1}{2}\ln(3x_n + 4)\right) - 1$ correctly at |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | least once                                                                                                        | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | Obtain answer 2.30                                                                                                | <b>A</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | Show sufficient iterations to at least 3 d.p. to justify 2.30 to 2 d.p., or show there is a                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | sign change in the interval (2.295, 2.305)                                                                        | <b>A</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | Show there is no other root                                                                                       | <b>A</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| OR2  | Use calculated values to obtain at least one interval containing the root                                         | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | Obtain answer 2.30                                                                                                | <b>A</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | Show there is no other root                                                                                       | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | 1 1                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (i)  | Using the formulae $\frac{1}{2}r^2\theta$ and $\frac{1}{2}bh$ , form an equation an $a$ and $\theta$              | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | 2 2                                                                                                               | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (ii) | Use the iterative formula correctly at least once                                                                 | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | · · · · · · · · · · · · · · · · · · ·                                                                             | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                                                                                                                   | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | OR1: OR2:                                                                                                         | OR1: Use an appropriate iterative formula, e.g. $x_{n+1} = \exp\left(\frac{1}{2}\ln(3x_n + 4)\right) - 1$ correctly at least once Obtain answer 2.30 Show sufficient iterations to at least 3 d.p. to justify 2.30 to 2 d.p., or show there is a sign change in the interval (2.295, 2.305) Show there is no other root  OR2: Use calculated values to obtain at least one interval containing the root Obtain answer 2.30 Show sufficient calculations to justify 2.30 to 3 s.f., e.g. show it lies in (2.295, 2.305) Show there is no other root | Obtain a 3-term quadratic equation $x^2 - x - 3 = 0$ , or equivalent  Solve 3-term quadratic obtaining 1 or 2 roots  Obtain answer 2.30 only  A1  OR1: Use an appropriate iterative formula, e.g. $x_{n+1} = \exp\left(\frac{1}{2}\ln(3x_n + 4)\right) - 1$ correctly at  least once  Obtain answer 2.30  Show sufficient iterations to at least 3 d.p. to justify 2.30 to 2 d.p., or show there is a sign change in the interval (2.295, 2.305)  Show there is no other root  OR2: Use calculated values to obtain at least one interval containing the root  Obtain answer 2.30  Show sufficient calculations to justify 2.30 to 3 s.f., e.g. show it lies in (2.295, 2.305)  A1  Show there is no other root  A1  Obtain given answer  A1  (i) Using the formulae $\frac{1}{2}r^2\theta$ and $\frac{1}{2}bh$ , form an equation an $a$ and $\theta$ Obtain given answer  A1  (ii) Use the iterative formula correctly at least once  Obtain answer $\theta = 1.32$ Show sufficient iterations to 4 d.p. to justify 1.32 to 2 d.p., or show there is a sign change |

| Page 5 | Mark Scheme: Teachers' version | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE AS/A LEVEL – May/June 2012 | 9709     | 32    |

- 3 EITHER: State a correct unsimplified term in x or  $x^2$  of  $(1-x)^{\frac{1}{2}}$  or  $(1+x)^{-\frac{1}{2}}$ 
  - State correct unsimplified expansion of  $(1-x)^{\frac{1}{2}}$  up to the term in  $x^2$
  - State correct unsimplified expansion of  $(1+x)^{-\frac{1}{2}}$  up to the term in  $x^2$
  - Obtain sufficient terms of the product of the expansions of  $(1-x)^{\frac{1}{2}}$  and  $(1+x)^{-\frac{1}{2}}$  M1
  - Obtain final answer  $1 x + \frac{1}{2}x^2$
  - OR1: State that the given expression equals  $(1-x)(1-x^2)^{-\frac{1}{2}}$  and state that the first term of the expansion of  $(1-x^2)^{-\frac{1}{2}}$  is 1
    - State correct unsimplified term in  $x^2$  of  $(1-x^2)^{-\frac{1}{2}}$
    - State correct unsimplified expansion of  $(1-x^2)^{-\frac{1}{2}}$  up to the term in  $x^2$
    - Obtain sufficient terms of the product of (1-x) and the expansion M1
    - Obtain final answer  $1 x + \frac{1}{2}x^2$
  - OR2: State correct unsimplified expansion of  $(1+x)^{\frac{1}{2}}$  up to the term in  $x^2$ 
    - Multiply expansion by (1-x) and obtain  $1-2x+2x^2$  B1
    - Carry out correct method to obtain one non-constant term of the expansion of
    - $(1-2x+2x^2)^{\frac{1}{2}}$  M1
    - Obtain a correct unsimplified expansion with sufficient terms

      A1
    - Obtain final answer  $1 x + \frac{1}{2}x^2$  A1 [5]
    - [Treat  $(1+x)^{-1}(1-x^2)^{\frac{1}{2}}$  by the *EITHER* scheme.]
    - [Symbolic coefficients, e.g.  $\binom{\frac{1}{2}}{2}$ , are not sufficient for the B marks.]
- 4 Use trig formulae to express equation in terms of  $\cos \theta$  and  $\sin \theta$  M1
  - Use Pythagoras to obtain an equation in  $\sin \theta$  M1
  - Obtain 3-term quadratic  $2\sin^2\theta 2\sin\theta 1 = 0$ , or equivalent
  - Solve a 3-term quadratic and obtain a value of  $\theta$  M1
  - Obtain answer, e.g. 201.5°

    A1
  - Obtain second answer, e.g. 338.5°, and no others in the given interval A1 [6]
  - [Ignore answers outside the given interval. Treat answers in radians (3.52, 5.91) as a misread and deduct A1 from the marks for the angles.]
- 5 Separate variables correctly and attempt integration of both sides B1
  - Obtain term  $-e^{-y}$ , or equivalent B1
  - Obtain term  $\frac{1}{2}e^{2x}$ , or equivalent B1
  - Evaluate a constant, or use limits x = 0, y = 0 in a solution containing terms  $ae^{-y}$  and  $be^{2x}$  M1
  - Obtain correct solution in any form, e.g.  $-e^{-y} = \frac{1}{2}e^{2x} \frac{3}{2}$
  - Rearrange and obtain  $y = \ln(2/(3 e^{2x}))$ , or equivalent A1 [6]

**B**1

| Page 6 | Mark Scheme: Teachers' version | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE AS/A LEVEL – May/June 2012 | 9709     | 32    |

6 (i) State derivative in any correct form, e.g.  $3\cos x - 12\cos^2 x \sin x$  B1 + B1 Equate derivative to zero and solve for  $\sin 2x$ , or  $\sin x$  or  $\cos x$  M1

Obtain answer 
$$x = \frac{1}{12}\pi$$

Obtain answer 
$$x = \frac{5}{12}\pi$$

Obtain answer 
$$x = \frac{1}{2}\pi$$
 and no others in the given interval A1 $\sqrt[h]{}$  [6]

(ii) Carry out a method for determining the nature of the relevant stationary point

Obtain a maximum at  $\frac{1}{12}\pi$  correctly

A1 [2]

[Treat answers in degrees as a misread and deduct A1 from the marks for the angles.]

7 (i) EITHER: Multiply numerator and denominator by 1 + 3i, or equivalent M1 Simplify numerator to -5 + 5i, or denominator to 10, or equivalent A1

Obtain final answer 
$$-\frac{1}{2} + \frac{1}{2}i$$
, or equivalent A1

OR: Obtain two equations in x and y, and solve for x or for y M1

Obtain 
$$x = -\frac{1}{2}$$
 or  $y = \frac{1}{2}$ , or equivalent

Obtain final answer 
$$-\frac{1}{2} + \frac{1}{2}i$$
, or equivalent A1 [3]

- (ii) Show B and C in relatively correct positions in an Argand diagram

  Show u in a relatively correct position

  B1

  B1

  [2]
- (iii) Substitute exact arguments in the LHS arg(1 + 2i) arg(1 3i) = arg u, or equivalent

  Obtain and use  $arg u = \frac{3}{4}\pi$ Obtain the given result correctly

  A1 [3]



| Page 7 | Mark Scheme: Teachers' version | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE AS/A LEVEL – May/June 2012 | 9709     | 32    |

8 (i) State or imply 2u du = -dx, or equivalent

B1

Substitute for *x* and d*x* throughout

M1

Obtain integrand  $\frac{-10u}{6-u^2+u}$ , or equivalent

**A**1

Show correct working to justify the change in limits and obtain the given answer correctly

A1 [4]

(ii) State or imply the form of fractions  $\frac{A}{3-u} + \frac{B}{2+u}$  and use a relevant method to find A

or

2 + u M1

Obtain A = 6 and B = -4

 $A1\sqrt{+}A1\sqrt{+}$ 

Integrate and obtain  $-6\ln(3-u)-4\ln(2+u)$ , or equivalent

▼ + Al

Substitute limits correctly in an integral of the form  $a \ln(3-u) + b \ln(2+u)$ 

Μl

Obtain the given answer correctly having shown sufficient working [The f.t. is on A and B.]

A1 [6]

9 (i) Use correct product rule

M1

Obtain derivative in any correct form, e.g.  $\frac{\ln x}{2\sqrt{x}} + \frac{\sqrt{x}}{x}$ 

A1 M1

Carry out a complete method to form an equation of the tangent at x = 1Obtain answer y = x - 1

A1 [4]

(ii) State or imply that the indefinite integral for the volume is  $\pi \int x(\ln x)^2 dx$ 

В1

Integrate by parts and reach  $ax^2 (\ln x)^2 + b \int x^2 \cdot \frac{\ln x}{x} dx$ 

M1\*

**A**1

Obtain  $\frac{1}{2}x^2(\ln x)^2 - \int x \ln x \, dx$ , or unsimplified equivalent

M1(dep\*)

Attempt second integration by parts reaching  $cx^2 \ln x + d \int x^2 \cdot \frac{1}{x} dx$ 

A1

Complete the integration correctly, obtaining  $\frac{1}{2}x^2(\ln x)^2 - \frac{1}{2}x^2\ln x + \frac{1}{4}x^2$ Substitute limits x = 1 and x = e, having integrated twice

M1(dep\*)

Obtain answer  $\frac{1}{4}\pi(e^2-1)$ , or exact equivalent

1 /

[If  $\pi$  omitted, or  $2\pi$  or  $\pi/2$  used, give B0 and then follow through.] [Integration using parts  $x \ln x$  and  $\ln x$  is also viable.]



| Page 8 |            | ge 8                                                                                                                     | Mark Scheme: Teachers' version Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | Papei             | •   |
|--------|------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------|-----|
|        |            |                                                                                                                          | GCE AS/A LEVEL – May/June 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9709                     | 32                |     |
| 10     | <b>(3)</b> | EITHED.                                                                                                                  | Substitute accordington of a common point of Lin since according                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | M1                |     |
| 10     | (i)        | EITHER:                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | M1<br>A1          |     |
|        |            | Obtain equation in $\lambda$ in any correct form<br>Verify that the equation is not satisfied for any value of $\lambda$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                   |     |
|        |            | OD1.                                                                                                                     | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | A1                |     |
|        |            | <i>OR</i> 1:                                                                                                             | Substitute for $\mathbf{r}$ in the vector equation of plane $m$ and expanding a substitute for $\mathbf{r}$ in the vector equation of plane $m$ and expanding the substitute for $\mathbf{r}$ in the vector equation of plane $m$ and expanding the vector equation of $m$ and $m$ | and scalar produc        |                   |     |
|        |            |                                                                                                                          | Obtain equation in $\lambda$ in any correct form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | A1                |     |
|        |            | OD2                                                                                                                      | Verify that the equation is not satisfied for any value of $\lambda$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          | A1                |     |
|        |            | OR2:                                                                                                                     | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | M1                |     |
|        |            |                                                                                                                          | Verify scalar product is zero Verify that one point of <i>l</i> does not lie in the plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          | A1                |     |
|        |            | OR3:                                                                                                                     | Use correct method to find perpendicular distance of a ger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | naral paint of I         | A1                |     |
|        |            | OKS.                                                                                                                     | from $m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nerai point oi i         | M1                |     |
|        |            |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | A1                |     |
|        |            |                                                                                                                          | Obtain a correct unsimplified expression in terms of $\lambda$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | for all 1                | A1<br>A1          |     |
|        |            | OR4:                                                                                                                     | Show that the perpendicular distance is 4/3, or equivalent,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                   |     |
|        |            | OK4.                                                                                                                     | Use correct method to find the perpendicular distance of a from <i>m</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | i particular point       | 01 <i>ι</i><br>M1 |     |
|        |            |                                                                                                                          | Obtain answer 4/3, or equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | A1                |     |
|        |            |                                                                                                                          | Show that the perpendicular distance of a second point is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | also 4/3 or              | Al                |     |
|        |            |                                                                                                                          | equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | aiso 4/3, 01             | A1                | [3] |
|        |            |                                                                                                                          | equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | 711               | اما |
|        | (ii)       | EITHER:                                                                                                                  | Express general point of $l$ in component form, e.g. $(1 + 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(1+\lambda-1+2\lambda)$ | B1                |     |
|        | (11)       | EIIIIER.                                                                                                                 | Substitute in given equation of $n$ and solve for $\lambda$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0, 1 . 70, 1 . 270)      | M1                |     |
|        |            |                                                                                                                          | Obtain position vector $5\mathbf{i} + 3\mathbf{j} + 3\mathbf{k}$ from $\lambda = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | A1                |     |
|        |            | OR:                                                                                                                      | State or imply plane <i>n</i> has vector equation $\mathbf{r} \cdot (2\mathbf{i} - 2\mathbf{j} + \mathbf{k})$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 7 or equivalen         |                   |     |
|        |            | OR.                                                                                                                      | Substitute for $\mathbf{r}$ , expand scalar product and solve for $\lambda$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , or equivalen           | M1                |     |
|        |            |                                                                                                                          | Obtain position vector $5\mathbf{i} + 3\mathbf{j} + 3\mathbf{k}$ from $\lambda = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | A1                | [3] |
|        |            |                                                                                                                          | Obtain position vector 31 + 31 + 3k from $n = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | Al                |     |
| (:::)  |            | Form an e                                                                                                                | equation in $\lambda$ by equating perpendicular distances of a gener                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | al noint of I from       | ı m               |     |
|        | (111)      | and <i>n</i>                                                                                                             | equation in 70 by equating perpendicular distances of a gener                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ar point or i from       | M1*               |     |
|        |            |                                                                                                                          | correct modular or non-modular equation in $\lambda$ in any form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | A1√               |     |
|        |            |                                                                                                                          | $\lambda$ and obtain a point, e.g. $7\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}$ from $\lambda = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | A1                |     |
|        |            |                                                                                                                          | second point, e.g. $3\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ from $\lambda = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          | A1                |     |
|        |            |                                                                                                                          | rect method to find the distance between the two points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | M1(dep*)          |     |
|        |            | Obtain an                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | A1                | [6] |
|        |            |                                                                                                                          | s on the components of <i>l</i> .]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          | 111               | רס  |
|        |            | L = 11.0 1.01 IV                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                   |     |