MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

9709 MATHEMATICS

9709/43

Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9709	43

Mark Scheme Notes

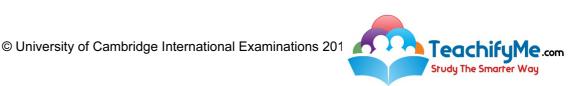
Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

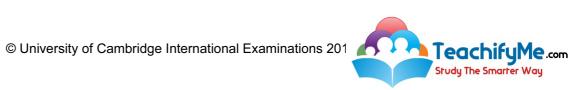
- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

© University of Cambridge International Examinations 201

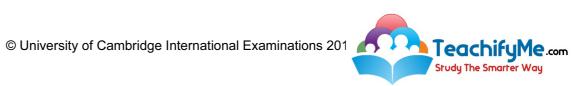

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9709	43

The following abbreviations may be used in a mark scheme or used on the scripts:

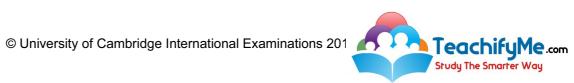
- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only – often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)


Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{2}$ " marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.



Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012		43


1			M1		For using WD = Fdcos α
		ND ((0.5 0) 249			
		$WD = 6 \times (0.5 \times 8) \cos 24^{\circ}$	A1		
		Work done is 21.9 J	A1	[3]	
2	(i)		M1		For resolving forces horizontally or vertically
		$T\cos\theta + T\sin\theta = 11.2$ (or - Tcos θ + Tsin θ = 0.16g)	A1		
		$-\operatorname{Tcos} \theta + \operatorname{Tsin} \theta = 0.16g$ (or Tcos θ + Tsin θ = 11.2)	A1	[3]	
	(ii)	$[T\cos\theta = 4.8 \text{ and } T\sin\theta = 6.4 \text{ and} \\ T^2 = 4.8^2 + 6.4^2 \text{ or } \tan\theta = 6.4/4.8] \\ [4T^2(\cos^2\theta + \sin^2\theta) = \\ (11.2 - 1.6)^2 + (11.2 + 1.6)^2 \\ \text{or } 2T\sin\theta \div 2T\cos\theta = \\ (11.2 + 1.6) \div (11.2 - 1.6) \\ \text{or } (T\cos\theta + T\sin\theta) \div (-T\cos\theta + T\sin\theta)$			For finding $T\cos\theta$ and $T\sin\theta$ and hence finding T or θ , OR for finding the value of $4T^2(\cos^2\theta + \sin^2\theta)$ or of $2T\sin\theta \div 2T\cos\theta$ or of $(T\cos\theta + T\sin\theta) \div (-T\cos\theta + T\sin\theta)$
		$= 11.2 \div 1.6$]	M1		
		T = 8 (or θ = 53.1)	A1		
		$\theta = 53.1 \text{ or } T = 8$	A1	[3]	
3	(i)		M1		For using $s = \int v dt$
		$s = 0.027(10t^3/3 - t^4/4)$ (+C)	A1		
		$s = 0.027[10\ 000/3 - 10000/4]$	DM1		For finding the value of <i>t</i> at A and using limits or equivalent
		Distance is 22.5 m	A1	[4]	
	(ii)	$[0.027(20t - 3t^2) = 0 \rightarrow t = 20/3]]$	M1		For using $dv/dt = 0$
		$v_{\rm max} = 0.027(4000/9 - 8000/27)$	A1ft		ft incorrect t in $0.027(10t^2 - t^3)$
		Maximum speed is 4 ms ⁻¹	A1	[3]	

Pa	nge 5	Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2012		Syllabus 9709	Paper 43			
			nay/June	2012	5105	τJ		
4 (i)	[When 4 when 19 $a_{ave} = (2$; M1		For using $a \approx \frac{\Delta v}{\Delta t}$			
	Average 4 ms^{-2} and	accelerations are nd 0.244 ms ^{-2}	A1	[2]				
(ii)	DF(5) =	P/5 and DF(20) = P/20	B1					
	[DF – R	= ma]	M1		For using Newton's 2 nd la	aw		
		$= 1230 \times 4$ and $= 1230 \times 0.244$	Alft		ft incorrect average a val	ues		
	P = 3080	00 (or $R = 1240$)	B1					
	R = 1240	0 (or $P = 30800$)	B1ft	[5]	ft P/5 – 1230a ₁ or P/20 – or 5(1230a ₁ + R) or 20(12	-		
5 (i)	WD aga	inst resistance = 800×500	B1					
	[2 800 00	$00 = PE \text{ gain} + 400\ 000]$	M1		For using WD by the driv PE gain + WD against re	•		
	[2400 00	$00 = 16000 g \times 500 \sin \alpha$	M1		For using PE gain = mgL	$sin \alpha$		
	α = 1.7		A1	[4]				
(ii)	[KE gair 800 000]	n = 2400000 + 2400000 -	M1		For using KE gain = WD force + PE loss – WD ag			
	4000 000) J	A1ft		ft PE gain			
	[½ 1600	$00(v^2 - 20^2) = 4000000]$	M1		For KE gain = $\frac{1}{2}$ m($v^2 - 2$) attempting to solve for v	20^2) and		
	Speed is	30 ms ⁻¹	A1	[4]				
ustific a Uses Ne	tion	candidates who assume constant cond Law and $v^2 = u^2 + 2as$ [4800 A1	-					
	Alternative Method for Part (i)							
(i)	[DF – m For usin [16000 >	force = $2800\ 000 \div 500$ gsina - R = m × 0] g Newton's second law < $10\sin\alpha = 5600 - 800$] ing the resultant equation for a	B1 M1 DM1 A1					
	$\alpha = 1.7$	ing the resultant equation for a		[4]				

	Pa	ge 6	Mark Scheme: Teac				Syllabus	Paper
			GCE AS/A LEVEL – N	lay/June	2012		9709	43
6	(i)			M1		For reso	olving forces para	llel to the plane
		F = 5.9 - 6	$5.1 \sin \alpha$	A1				
		$R = 6.1 \cos \theta$	δα	B1				
		[5.9 – 6.1	$\sin\alpha \leq \mu \left(6.1 \cos \alpha \right)]$	M1		For usir	ng F $\leq \mu R$	
		$\mu > \frac{4}{5}$		A1	[5]	AG		
	(ii)	[6.1 × (11/	$(61) + 5.9 - \mu 6.1 \times (60/61) > 0]$	M1		For usir force >	ng $F = \mu R$ and 'ne 0'	et downward
		$\mu < \frac{7}{6}$		A1	[2]	AG		
	(iii)	$[6.1 \times (11)]$ 0.61×1.7	$(61) + 5.9 - \mu \ 6.1 \times (60/61) =$	M1		For usir	ng Newton's 2 nd 1	aw and $F = \mu R$
		$\mu = 0.994$		A1	[2]			
7	(i)					For usir	ng Newton's seco	nd law
		$[T - 0.12g] a = \frac{0.38}{0.38} + \frac{0.38}{0.38$	= 0.12a & 0.38g - T = 0.38a; = 0.12 g]	M1		for A ar	nd B or for using	$a = \frac{M - m}{M + m}g$
		Accelerati	on is 5.2 ms ^{-2}	A1	[2]			
	(ii)	$[v^2 = 2 \times 5]$	$0.2 \times 0.65; 0.65 = \frac{1}{2} 5.2 T_{B}^{2}$	M1		For usir	ng $v^2 = 2ah$ or $s =$	$\frac{1}{2} at^{2}$
		Speed of I	3 is 2.6ms^{-1} or $\text{T}_{\text{B}} = 0.5$	A1ft		ft incor	rect a	
		$T_{\rm B} = 0.5 {\rm o}$	r Speed of B is 2.6ms^{-1}	B1	[3]			
	(iii)	[-2.6 = 2.	6 – 10(T – 0.5)]	M1		For usir equival	ng - V = V - g(T)	$-T_{\rm B}$) or
		T = 1.02		A1ft		ft incor	rect V and/or T_B	
			aph for $0 < t < 1.02$ t values of V, T and T _B	B1ft	[3]		0.5	.02
	(iv)	[0.65 + 0.5	5(1.02 – 0.5)2.6]	M1			ng 'total distance $(T_{\rm B}) + 2 \times \frac{1}{2} \frac{T_A}{2}$	$-\frac{T_B}{2}$ V
		Total dista	nce is 1.326 m (accept 1.33)	A1	[2]			

