MARK SCHEME for the May/June 2013 series

9709 MATHEMATICS

9709/43

Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Page 2 Mark Scheme		Paper
	GCE AS/A LEVEL – May/June 2013	9709	43

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	43

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{"}$ marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4		Mark Scheme			Syllabus	Paper
		GCE AS/A LEVEL – May	June 2	2013	9709	43
1	[(W / g)	$a = W \sin \alpha - 0.02 W \cos \alpha$]	M1		For using Newton's se	econd law
	a = (sin	$14^{\circ} - 0.02 \cos 14^{\circ}) g$ (= 2.225)	A1			
	$[v^2 = 8^2]$	$+2 \times 2.225 \dots \times 50$]	M1		For using $v^2 = u^2 + 2a$	a s
	Speed is	s 16.9 m s ⁻¹	A1	[4]		
		Alternative	e Schem	e		
1	WD aga	inst friction = $0.02 \text{ W} \cos \alpha \times 50$	B1			
	PE loss	$=$ W \times 50 sin α	B1			
			M1		For using Gain in KE – WD against friction	
	Speed is	$s 16.9 \text{ m s}^{-1}$	A1	[4]		
2 (i)			M1		PE loss = B's loss - A	's gain
	Loss of	$PE = 2g \times 3.24 - 1.6 g (3.24 \times 0.8)$	A1			
	Loss is 2	23.328 J.	A1	[3]	AG	
(ii)	1/2 (1.6 +	$(-2) v^2 = 23.328$	B1			
	Speed is	3.6 m s^{-1}	B1	[2]		
					SR (max 1/2) for usin second law and $v^2 = u^2 + 2 a s$ 2 g - T = 2 a and T - a = 2 $v^2 = 2 \times 2 \times 3.24$ v	1.6g × 0.8 1.6a
3			M1		For using $DF = P / v$	
			M1		For using Newton's 2 both speeds / accelera	
		14 - R = 800 x 1.4 and 25 - R = 800 x 0.33	A1			
			M1		For solving for P	
	P = 27.2		A1			
	R = 825		B1	[6]	Accept 825.5	

Page 5		Mark Sch	ieme	Syllabus Paper				
			GCE AS/A LEVEL –	May/June 2	2013	9709 43		
4 ((i)			M1		For integrating a (t) to obtain v (t)		
		V (t) = 1	$.5 t + 0.006 t^2$	A1		Constant of integration zero or absent		
		$t^2 + 250t$	+ 1.5 t - 90 = 0 ightarrow - 15000 = 0] ightarrow (t + 300) = 0] ightarrow i	DM1		For using v (t) = 90 and solving for t (dependent on integration)		
		Leaves t	he ground when $t = 50$	A1	[4]			
(i	ii)			M1		For integrating v (t) and using limits 0 to candidate's answer for part (i)		
		s = 0.75	$t^2 + 0.002 t^3$	A1ft		ft if there is a non-zero constant of integration C in part (i) $s = 0.75 t^2 + 0.002 t^3 + C t$		
		Distance	e is 2125 m	A1ft	[3]	Accept 2120 or 2130 ft t from part (i) in $0.75 t^2 + 0.002 t^3$		
5 ((i)	[for P 17 and	$\begin{array}{l} 1.7 - 2 \ge 0.7 \\ t - 5 \ t^2 = 0 \end{array}$ = 5 \ t^2 = 0]	M1		T = 2 x time to max. height for P – 2 x time to max. height for Q or For using T = time for P to return to ground – time for Q to return to ground		
		T = 2		A1	[2]	SR (max 1/2) for candidates who find difference in time to maximum height T = 1.7 - 0.7 = 1 B1		
(i	ii)			M1		For using $h_P - h_Q = 5$ and $s = u t - 5 t^2$ for both P and Q		
		17(t+2) $17t-5t^{2}$	$-5(t+2)^{2} - (7t - 5t^{2}) = 5 \text{ or} -7(t-2) + 5(t-2)^{2} = 5$					
				A1	ft	ft T from part (i)		
		t = 0.9 or	r t = 2.9	A1				
				M1		For using $v = u - 10 t$ for P and Q		

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	43

		$v_P = 17 - 10 (0.9 + 2),$ $v_Q = 7 - 10 \times 0.9 \Rightarrow$ Magnitudes are 12 m s ⁻¹ & 2 m s ⁻¹ The direction for both is vertically downwards	A1 A1	ft [6]	ft using t_P and t_P-T or using t_Q and t_Q+T
6	(i)	$100 \cos 30^{\circ} + 120 \cos 60^{\circ} - F \cos a =$	M1		For resolving the applied forces on the box in the <i>x</i> -direction or the <i>y</i> -direction.
		136 (F cos α = 10.6025) or 100 sin 30° - 120 sin 60° + F sin α =0 (F sin α =53.9230) 100 sin 30° - 120 sin 60° + F sin α = 0 (F sin α =53.9230) or 100 sec 20° + 120 sec (0° F sec r	A1		
		$100 \cos 30^{\circ} + 120 \cos 60^{\circ} - F \cos \alpha$ = 136 (F \cos \alpha = 10.6025 \dots)	B1		
			M1		for using $F^2 = (F \cos \alpha)^2 + (F \sin \alpha)$ or $\tan \alpha = F \sin \alpha \div F \cos \alpha$
		$F = 55.0 \text{ or } \alpha = 78.9$	A1		
		$\alpha = 78.9 \text{ or } F = 55.0$	B1	[6]	
	(ii)	Magnitude is 136 N	B1		
		R = 40 g	B1		
		Coefficient is 0.34	B1	[3]	

Page 7		е 7	Mark Sche	eme		Syllabus	Paper	
			GCE AS/A LEVEL – I	May/June 2	013	9709	43	
7	(i)			M1		For applying Newton or to B	's 2 nd law to A	
			7) 1.26 g = 1.26 a or $\Gamma = 0.9$ a	A1				
			T = 0.9 a or 7) 1.26 g = 1.26 a					
			(2 / 7) 1.26 g = $(0.9 + 1.26)$ a	B1				
		Acceleration is 2.5 m s ⁻²		B1		AG		
		Tension is 6.75 N		A1	[5]			
	(ii)	$[v^2 = 2]$	× (2.5) × 0.45]	M1		For using $v^2 = 2 a h$		
		Speed is	s 1.5 m s ⁻¹	A1 [2]				
	(iii)	[-(2/7) 1.26 g = 1.26 a]	M1		For applying Newton	's 2 nd law to A	
		a = -20) / 7	A1				
		$[v^2 = 2.2]$	25 + 2 (-20 / 7) (0.03)]	M1		For using $v^2 = v_B^2 + 2$	2 a s	
		Speed is	s 1.44 m s ⁻¹	A1	[4]			

