This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE®, Cambridge International A and AS Level components and some Cambridge O Level components.
Mark Scheme Notes

Marks are of the following three types:

M Method mark, awarded for a valid method applied to the problem. Method marks are
 not lost for numerical errors, algebraic slips or errors in units. However, it is not usually
 sufficient for a candidate just to indicate an intention of using some method or just to
 quote a formula; the formula or idea must be applied to the specific problem in hand,
 e.g. by substituting the relevant quantities into the formula. Correct application of a
 formula without the formula being quoted obviously earns the M mark and in some
 cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained.
 Accuracy marks cannot be given unless the associated method mark is earned (or
 implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more “method” steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are
 several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a
 particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme.
 When two or more steps are run together by the candidate, the earlier marks are implied and
 full credit is given.

- The symbol \checkmark implies that the A or B mark indicated is allowed for work correctly following on
 from previously incorrect results. Otherwise, A or B marks are given for correct work only. A
 and B marks are not given for fortuitously “correct” answers or results obtained from
 incorrect working.

- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether
a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless
otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working
following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the
 scheme specifically indicates otherwise.

- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f.,
 or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated
 above, an A or B mark is not given if a correct numerical answer arises fortuitously from
 incorrect working. For Mechanics questions, allow A or B marks for correct answers which
 arise from taking g equal to 9.8 or 9.81 instead of 10.
The following abbreviations may be used in a mark scheme or used on the scripts:

AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO Correct Answer Only (emphasising that no “follow through” from a previous error is allowed)
CWO Correct Working Only – often written by a ‘fortuitous’ answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become “follow through √” marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.
1

\[P(3, 4, 5) = \binom{10}{3} \left(\frac{1}{6}\right)^3 \left(\frac{5}{6}\right)^7 + \binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6 + \binom{10}{5} \left(\frac{1}{6}\right)^5 \left(\frac{5}{6}\right)^5 = 0.222 \]

Mark Scheme

- **M1** Bin expression of form \(10C_x(p)^x(1-p)^{10-x}\) any \(x\) any \(p\)
- **A1** Correct unsimplified answer accept (0.17, 0.83), (0.16, 0.84), (0.16, 0.83), (0.17, 0.84) or more accurate
- **A1** 3 Correct answer

2

Midpoints 13, 30.5, 40.5, 50.5, 73

Mean =

\[
\frac{4 \times 13 + 24 \times 30.5 + 38 \times 40.5 + 34 \times 50.5 + 20 \times 73}{120} = \frac{5500}{120} = 45.8
\]

Var =

\[
\frac{4 \times 13^2 + 24 \times 30.5^2 + 38 \times 40.5^2 + 34 \times 50.5^2 + 20 \times 73^2}{120} - (45.8\ldots)^2
\]

\[
= \frac{278620}{120} - 45.8\ldots^2
\]

\[
= 2321.8333 - 45.8\ldots^2
\]

\[
sd = 14.9
\]

Mark Scheme

- **M1** Attempt at midpoints at least 3 correct
- **M1** Using their midpoints i.e. cw, ucb, 1/2 cw and freqs into correct formula must be divided by 120
- **A1** Correct answer from correct working Evaluating
- **M1** \(\sum fx^2\) their \(x^2\) must see their 45.8^2 subtracted allow cw etc
- **A1** 5 Correct answer

3 (i)

- **B1** LQ = 2.6 med = 3.8–3.85, UQ = 6.4–6.6
- **B1** Correct quartiles and median on graph ft linear from 2–10
- **B1** End whiskers correct not through box
- **B1** 4 Label need seconds and linear 2–10 axis or can have 5 values on boxplot no line provided correct

(ii)

\[1.5 \times IQR = 1.5 \times 3.8 = 5.7 \]

\[LQ - 5.7 = -ve, UQ + 5.7 = 12.1 \text{ i.e. } >10 \]

So no outliers AG

Mark Scheme

- **M1** Attempt to find \(1.5 \times IQR\) and add to UQ or sub from LQ OR compare \(1.5 \times IQR\) with gap 3.6 between UQ and max 10
- **A1** 2 Correct conclusion from correct working need both

4 (i)

\[0.3 \times 0.72 + 0.7 \times x = 0.783 \]

\[x = 0.81 \]

Mark Scheme

- **M1** Eqn with sum of two 2-factor probs = 0.783
- **A1** Correct equation
- **A1** 3 Correct answer
(ii) \(P(S \text{ given not like}) = \frac{P(S \cap NL)}{P(NL)} = \frac{0.3 \times 0.28}{0.3 \times 0.28 + 0.7 \times 0.19} = 0.387 \)

\[\text{B1} \quad 0.3 \times 0.28 \text{ seen on its own as num or denom of a fraction} \]
\[\text{M1} \quad \text{Attempt at} \ P(NL) \text{ either} \ (0.3 \times p_1) + (0.7 \times p_2) \text{ or } 1 - 0.783 \text{ seen anywhere} \]
\[\text{A1} \quad \text{Correct unsimplified} \ P(NL) \text{ as num or denom of a fraction} \]
\[\text{A1} \quad \text{Correct answer} \]

5 (i) \(P(2\text{Es }1\text{O}) = \frac{3}{5} \times \frac{2}{4} \times \frac{2}{3} \times \binom{2}{1} = \frac{3}{5} \times \frac{1}{2} = 0.6 \)

\[\text{M1} \quad 5 \times 4 \times 3 \text{ seen in denom} \]
\[\text{M1} \quad \text{Malt a prob by} \ \binom{3}{2} \text{ oe} \]
\[\text{A1} \quad 3 \quad \text{Correct answer} \]

\[\text{M1} \quad \binom{3}{2}, \ \binom{3}{1} \text{ oe seen mult by } k \geq 1 \text{ in num} \]
\[\text{A1} \quad \text{Correct answer} \]

\[\text{M1} \quad \text{List at least 3 of} \ 241, 247, 261, 267, 461, 467 \]
\[\text{A1} \quad \text{Correct answer} \]

(ii) \[\begin{array}{cccc}
\text{s} & 1 & 2 & 4 \\
P(S = s) & 6/10 & 3/10 & 1/10 \\
\end{array} \]

\[\text{M1} \quad \text{Attempt at listing with at least 7 correct} \]
\[\text{A1} \quad \text{All correct and no others or all 60} \]
\[\text{B1} \quad 1, 2, 4 \text{ only seen in top row} \]
\[\text{B1} \quad \text{Any two correct} \]
\[\text{B1} \quad \text{All correct} \]

6 (a) (i) \(N****\text{B} \)

\[\text{Number of ways} = \frac{5!}{3!} = 20 \]

\[\text{B1} \quad 5! \text{ seen in num oe or alone mutl by } k \geq 1 \]
\[\text{B1} \quad 3! \text{ seen in denom can be mutl by } k \geq 1 \]
\[\text{B1} \quad \text{Correct final answer} \]

(ii) \(B(\text{AAA})\text{NNS} \)

\[\text{Number of ways} = \frac{5!}{2!} \text{ or } \binom{5}{3} = 60 \]

\[\text{M1} \quad 5! \text{ seen as a num can be mutl by } k \geq 1 \]
\[\text{M1} \quad \text{Dividing by 2!} \]
\[\text{A1} \quad 3 \quad \text{Correct final answer} \]

(b) \(^{14}\text{C}_9 \text{ total options} = 2002 \)

\[\text{T and M both in} \ ^{12}\text{C}_7 = 792 \]
\[\text{Ans 2002} - 792 = 1210 \]

\[\text{OR} \]
\[\text{Neither in} \ ^{12}\text{C}_9 = 220 \]
\[\text{One in} \ ^{12}\text{C}_8 = 495 \]
\[\text{Other in} \ ^{12}\text{C}_7 = 495 \]

\[\text{M1} \quad ^{14}\text{C}_9 \text{ or } ^{14}\text{P}_9 \text{ in subtraction attempt} \]
\[\text{M1} \quad ^{12}\text{C}_7 (792) \text{ seen} \]
\[\text{A1} \quad 3 \quad \text{Correct final answer} \]

\[\text{OR} \]
\[\text{Summing 2 or 3 options at least 1 correct would be } 12\text{C}_7 \]

\[\text{M1} \quad \text{Second correct option seen accept another 495 or if M1 not awarded, any correct option} \]
<table>
<thead>
<tr>
<th>Exercise</th>
<th>Question</th>
<th>Marks</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 (a) (i)</td>
<td>(\text{prob} = P\left(z < \frac{30 - 35.2}{4.7} \right))</td>
<td>A1</td>
<td>Correct final answer</td>
</tr>
<tr>
<td></td>
<td>= (1 - 0.8655 = 0.1345)</td>
<td>M1</td>
<td>Standardising no sq rt no cc no sq</td>
</tr>
<tr>
<td></td>
<td>(0.1345 \times 52 = 6.99)</td>
<td>A1</td>
<td>(1 - \Phi)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A1</td>
<td>Correct ans rounding to 0.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A1</td>
<td>Correct final answer accept 6 or 7 if 6.99 not seen but previous prob 0.1345 correct</td>
</tr>
<tr>
<td>(ii)</td>
<td>(\Phi(t) = 0.648) (z = 0.380)</td>
<td>B1</td>
<td>0.648 seen</td>
</tr>
<tr>
<td></td>
<td>(0.380 = \frac{t - 35.2}{4.7}) (t = 37.0)</td>
<td>M1</td>
<td>standardising allow cc, sq rt, sq, need use of tables not 0.148, 0.648, 0.352, 0.852</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A1</td>
<td>correct answer rounding to 37.0</td>
</tr>
<tr>
<td>(b)</td>
<td>(7 - \mu = -0.8\sigma) so (7 - \mu = -0.8\sigma)</td>
<td>B1</td>
<td>(\pm 0.8) seen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B1</td>
<td>(\pm 0.44) seen</td>
</tr>
<tr>
<td></td>
<td>(\frac{10 - \mu}{\sigma} = 0.44) so (10 - \mu = 0.44\sigma)</td>
<td>M1</td>
<td>An eqn with z-value, (\mu) and (\sigma) no sq rt no cc no sq</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M1</td>
<td>Sensible attempt to eliminate (\mu) or (\sigma) by subst or subtraction, need at least one value</td>
</tr>
<tr>
<td></td>
<td>(\mu = 8.94) (\sigma = 2.42)</td>
<td>A1</td>
<td>Correct answers</td>
</tr>
</tbody>
</table>