Mathematics 9709/33
Pure Mathematics 3 (P3) May/June 2015
1 hour 45 minutes

Additional Materials: Answer Booklet/Paper
Graph Paper
List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet.
Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.

Answer all the questions.
Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in
degrees, unless a different level of accuracy is specified in the question.
The use of an electronic calculator is expected, where appropriate.
You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 75.
Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger
numbers of marks later in the paper.

This document consists of 3 printed pages and 1 blank page.
1 Solve the equation \(\ln(x + 4) = 2 \ln x + \ln 4 \), giving your answer correct to 3 significant figures. [4]

2 Solve the inequality \(|x - 2| > 2x - 3\). [4]

3 Solve the equation \(\cot 2x + \cot x = 3 \) for \(0^\circ < x < 180^\circ \). [6]

4 The curve with equation \(y = \frac{e^{2x}}{4 + e^{3x}} \) has one stationary point. Find the exact values of the coordinates of this point. [6]

5 The parametric equations of a curve are
\[
x = a \cos^4 t, \quad y = a \sin^4 t,
\]
where \(a \) is a positive constant.

(i) Express \(\frac{dy}{dx} \) in terms of \(t \). [3]

(ii) Show that the equation of the tangent to the curve at the point with parameter \(t \) is
\[
x \sin^2 t + y \cos^2 t = a \sin^2 t \cos^2 t.
\] [3]

(iii) Hence show that if the tangent meets the \(x \)-axis at \(P \) and the \(y \)-axis at \(Q \), then
\[
OP + OQ = a,
\]
where \(O \) is the origin. [2]

6 It is given that \(\int_0^a x \cos x \, dx = 0.5 \), where \(0 < a < \frac{1}{2} \pi \).

(i) Show that \(a \) satisfies the equation \(\sin a = \frac{1.5 - \cos a}{a} \). [4]

(ii) Verify by calculation that \(a \) is greater than 1. [2]

(iii) Use the iterative formula
\[
a_{n+1} = \sin^{-1} \left(\frac{1.5 - \cos a_n}{a_n} \right)
\]
to determine the value of \(a \) correct to 4 decimal places, giving the result of each iteration to 6 decimal places. [3]
7 The number of micro-organisms in a population at time t is denoted by M. At any time the variation in M is assumed to satisfy the differential equation
\[
\frac{dM}{dt} = k(\sqrt{M}) \cos(0.02t),
\]
where k is a constant and M is taken to be a continuous variable. It is given that when $t = 0$, $M = 100$.

(i) Solve the differential equation, obtaining a relation between M, k and t. [5]

(ii) Given also that $M = 196$ when $t = 50$, find the value of k. [2]

(iii) Obtain an expression for M in terms of t and find the least possible number of micro-organisms. [2]

8 The complex number $1 - i$ is denoted by u.

(i) Showing your working and without using a calculator, express
\[
\frac{i}{u}
\]
in the form $x + iy$, where x and y are real. [2]

(ii) On an Argand diagram, sketch the loci representing complex numbers z satisfying the equations $|z - u| = |z|$ and $|z - i| = 2$. [4]

(iii) Find the argument of each of the complex numbers represented by the points of intersection of the two loci in part (ii). [3]

9 Two planes have equations $x + 3y - 2z = 4$ and $2x + y + 3z = 5$. The planes intersect in the straight line l.

(i) Calculate the acute angle between the two planes. [4]

(ii) Find a vector equation for the line l. [6]

10 Let $f(x) = \frac{11x + 7}{(2x - 1)(x + 2)^2}$.

(i) Express $f(x)$ in partial fractions. [5]

(ii) Show that $\int_{1}^{2} f(x) \, dx = \frac{1}{4} + \ln\left(\frac{2}{3}\right)$. [5]