MARK SCHEME for the October/November 2012 series

9709 MATHEMATICS

9709/43

Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Page 2 Mark Scheme		Paper	
	GCE AS LEVEL – October/November 2012	9709	43	

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol s^h implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL – October/November 2012	9709	43

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page 4	Mark Scheme		00/7	Syllabus	Paper
		GCE AS LEVEL – October/No	ovember	2012	9709	43
1	(i)	PE loss = $0.8g \times (2.5 - 1.8)$ (= 5.6J)	B1			
		Work done is 5.6 J	B1	2		
	(ii)		M1		For using KE gain PE loss – WD again	
		$\frac{1}{2} 0.8v^2 = 0.8g \times 2.5 - 0.6 \times 5.6$	A1ft			
		Speed at <i>B</i> is 6.45 ms ^{-1}	A1	3		
2	(i)	[a = 0.2 + 0.012t]	M1		For differentiating	to find $a(t)$.
		$[0.2 + 0.012t = 2.5 \times 0.2]]$	M1		For attempting to so $a(t) = 2.5a(0)$	olve
		<i>t</i> = 25	A1	3	AG	
	(ii)	$[s = 0.1t^2 + 0.002t^3 \ (+C)]$	M1		For integrating to f	ind $s(t)$
					For using limits 0 to evaluating $s(t)$ with	C = 0 (which
		$[s = 0.1 \times 625 + 0.002 \times 15625]$	DM1		may be implied by	its absence)
		Displacement is 93.75 (accept 93.7 or 93.8)	A1	3		
3	(i)	$[0=8^2-2gs]$	M1		For using $0 = u^2 - 2$	2gs
		Maximum height is 3.2 m	A1			
		$[v^2 = 8^2 - 2g \times 1.6]$	M1		For using $v^2 = u^2 - $	2gs
		Speed is 5.66 ms^{-1}	A1	4		
	(ii)	[5.65685 = 8 - 10t]	M1		For using $v = u - gu$	t
		Time is 0.234 s	A1	2		
4	[T ₁ sinA	$[T_1 \sin APN = T_2 \sin BPN]$			For resolving force	s horizontally
		$(12 \div 13)T_1 = (15 \div 25)T_2$ or $T_1\sin 67.4^\circ = T_2\sin 36.9^\circ$			AEF	
	[T ₁ cos	$[T_1 cosAPN + T_2 cosBPN = 21]$			For resolving force	s vertically
		$(5 \div 13)T_1 + (20 \div 25)T_2 = 21$ or T ₁ cos67.4° + T ₂ cos36.9° = 21			AEF	
			M1		For solving for T_1 a	and T ₂
	Tensio	n in S_1 is 13 N, tension in S_2 is 20 N	A1	6		

	Page 5	Mark Scheme			Syllabus	Paper	
		GCE AS LEVEL – October/N	lovember	2012	9709	43	
	Alternativ	e solution using Lami's Theorem					
4	$[T_1/\sin(180 - BPN) = 21/\sin(APN + BPN)]$		M1		For using Lami's T an equation in T_1	heorem to form	
		$ -\cos^{-1}(20/25)) = -1(20/25) + \cos^{-1}(20/52)) $					
		-36.9) = 21/sin(36.9 + 67.4)	A1		AEF		
	[T ₂ /sin(180	$(APN) = 21/\sin(APN + BPN)$	M1		For using Lami's T an equation in T_2	heorem to form	
	$21/\sin(\cos^2)$	$-\cos^{-1}(20/52)) =$ $^{1}(20/25) + \cos^{-1}(20/52))$					
	or T ₂ /sin(180-	-67.4)=21/sin(36.9 + 67.4)	A1		AEF		
			M1		For solving for T_1 a	nd T ₂	
	Tension in	S_1 is 13 N, tension in S_2 is 20 N	A1	6			
	Alternativ	e solution using Sine Rule					
4	[T ₁ /sin <i>BPN</i>	$V = 21/\sin(180 - (APN + BPN))]$	M1		For using the Sine Rule on a triangle of forces to form an equation in T_1		
	T ₁ /(15/25) or	$= 21/\sin(\cos^{-1}(20/25) + \cos^{-1}(20/52))$					
		$P = 21/\sin(180 - (36.9 + 67.4))$	A1		AEF		
	[T ₂ /sinAPN	$N = 21/\sin(180 - (APN + BPN))]$	M1		For using the Sine I equation in T_2	Rule to form an	
	T ₂ /(12/13) or	$= 21/\sin(\cos^{-1}(20/25) + \cos^{-1}(20/52))$					
		$P = 21/\sin(180 - (36.9 + 67.4))$	A1		AEF		
			M1		For solving for T_1 a	nd T ₂	
	Tension in	S_1 is 13 N, tension in S_2 is 20 N	A1	6			

	Page 6	Mark Scheme	Syllabus Paper		
		GCE AS LEVEL – October/No	vember	2012	9709 43
5	(i)	$\left[\frac{1}{2} 12(7^2 - 3^2)\right]$	M1		For using KE = $\frac{1}{2} m(v_{\rm B}^2 - v_{\rm A}^2)$
		Increase is 240 J	A1	2	
	(ii)		M1		For using <i>mgh</i> = KE gain
		$12g \times AB\sin 10^\circ = 240$	A1ft		
		Distance is 11.5 m	A1	3	
					SR for candidates who avoid 'hence' (max 2/3) For using Newton's Second Law and $v^2 = u^2 + 2as$ [12gsin 10°=12a $7^2 = 3^2 + 2(gsin10^\circ \times AB)$] M1 11.5 m A1
	(iii)	(iii)			For using $F(AB)\cos 10^\circ = PE$ gain or for using Newton's 2^{nd} law with a = 0.
		F x $11.5\cos 10^\circ = 240$ or Fcos $10^\circ - 12g\sin 10^\circ = 0$	A1ft		
		Magnitude is 21.2 N	A1	3	
6	$[P = \pm$	$[P = \pm F + 0.6gsin25^{\circ}]$			For resolving forces in the direction of P
		$F + 0.6gsin25^{\circ}$ or ' $P = F + 0.6gsin25^{\circ}$ he particle is about to slide upwards'	A1		
	P = -	- $F + 0.6gsin25^{\circ}$ or - $F + 0.6gsin25^{\circ}$ when the particle is about e downwards'	A1		
	R = 0.6	ógcos25°	B1		
	[F = 0.	$36 \times 0.6g\cos 25^{\circ}$]	M1		For using $F = \mu R$
		$= 0.36 \times 0.6g\cos 25^{\circ} + 0.6g\sin 25^{\circ},$ $P_{\min} = -0.36 \times 0.6g\cos 25^{\circ} + 0.6g\sin 25^{\circ}]$ $4.49, P_{\min} = 0.578 \text{ (accept 0.58)}$	DM1 A1		For substituting for F to obtain values of P_{max} and P_{min} Dependent on first M mark
			M1		For identifying range of value for equilibrium AEF; Accept 0.58 instead of 0.578
	Set of	values is $\{P; 0.578 \le P \le 4.49\}$	A1	9	and accept $<$ instead of \leq

	Page 7		Mark Scheme	Syllabus	Paper		
			GCE AS LEVEL – October/Nov	vember	2012	9709	43
7	(i)			M1		For applying Newton's 2^{nd} law to <i>A</i> or to <i>B</i> .	
		0.	32g - T = 0.32a (or $T = 0.48a$)	A1			
			= 0.48a (or 0.32g - T = 0.32a) OR $32g = (0.32 + 0.48)a$	B1			
				M1		For solving for <i>a</i> an	d T
		A N	cceleration is 4 ms^{-2} and tension is 1.92	A1	5		
	(ii)	[0	$.98 = \frac{1}{2} 4t^2$]	M1		For using $s = \frac{1}{2} at^2$	
		Ti	me taken is 0.7 s	A1	2		
	(iii)			M1		For using $v = at$ for = d/v for slack stage	÷
		<i>v</i> :	$= 4 \times 0.7$ and $t = (1.4 - 0.98)/v$ (= 0.15)	A1ft		ft <i>a</i> from (i) and /or $a\neq g$)	<i>t</i> from (ii) (a>0,
	Time ta	aker	n is 0.85 s	A1	3		

