This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.
Mark Scheme Notes

Marks are of the following three types:

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

* When a part of a question has two or more “method” steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

* The symbol \(\checkmark\) implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously “correct” answers or results obtained from incorrect working.

* Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

* Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.

* For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking \(g\) equal to 9.8 or 9.81 instead of 10.

© Cambridge International Examinations 2013
The following abbreviations may be used in a mark scheme or used on the scripts:

AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO Correct Answer Only (emphasising that no “follow through” from a previous error is allowed)
CWO Correct Working Only – often written by a ‘fortuitous’ answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become “follow through √” marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA −1 This is deducted from A or B marks in the case of premature approximation. The PA −1 penalty is usually discussed at the meeting.
1. Use correct quotient or product rule
 Obtain correct derivative in any form
 Justify the given statement
 \[M1 \]

2. \textit{Either:} State or imply non-modular equation \(2^2 (3^x - 1)^2 = (3^x)^2 \), or pair of equations
 \[\begin{align*}
 2 (3^x - 1) &= \pm 3^x \\
 \text{Obtain } 3^x &= 2 \text{ and } 3^x &= \frac{2}{3} \text{ (or } 3^{x+1} = 2) \\
 \text{OR: } \text{Obtain } 3^x &= 2 \text{ by solving an equation or by inspection} \\
 \text{Obtain } 3^x &= \frac{2}{3} \text{ (or } 3^{x+1} = 2) \text{ by solving an equation or by inspection} \\
 \text{Use correct method for solving an equation of the form } 3^x = a \text{ (or } 3^{x+1} = a), \text{ where } a > 0 \\
 \text{Obtain final answers } 0.631 \text{ and } -0.369
 \end{align*} \]

3. \textit{Either:} Integrate by parts and reach \(kx^2 \ln x - m \int x^2 \frac{1}{x} \, dx \)
 \[M1^* \]
 \[\text{Obtain } 2x^2 \ln x - 2 \int x^2 \frac{1}{x} \, dx, \text{ or equivalent} \]
 \[A1 \]
 \[\text{Integrate again and obtain } 2x^2 \ln x - 4x^2 \frac{1}{x}, \text{ or equivalent} \]
 \[A1 \]
 \[\text{Substitute limits } x = 1 \text{ and } x = 4, \text{ having integrated twice} \]
 \[M1^{(dep*)} \]
 \[\text{Obtain answer } 4(\ln 4 - 1), \text{ or exact equivalent} \]
 \[A1 \]
 \[\text{OR}1: \text{Using } u = \ln x, \text{ or equivalent, integrate by parts and reach } kue^{1/2} - m \int e^{1/2} \, du \]
 \[M1^* \]
 \[\text{Obtain } 2ue^{1/2} - 2 \int e^{1/2} \, du, \text{ or equivalent} \]
 \[A1 \]
 \[\text{Integrate again and obtain } 2ue^{1/2} - 4e^{1/2} \frac{1}{u}, \text{ or equivalent} \]
 \[A1 \]
 \[\text{Substitute limits } u = 0 \text{ and } u = \ln 4, \text{ having integrated twice} \]
 \[M1^{(dep*)} \]
 \[\text{Obtain answer } 4\ln 4 - 4, \text{ or exact equivalent} \]
 \[A1 \]
 \[\text{OR}2: \text{Using } u = \sqrt{x}, \text{ or equivalent, integrate and obtain } k(u \ln u - m \int \frac{1}{u} \, du) \]
 \[M1^* \]
 \[\text{Obtain } 4u \ln u - 4 \int du, \text{ or equivalent} \]
 \[A1 \]
 \[\text{Integrate again and obtain } 4u \ln u - 4u, \text{ or equivalent} \]
 \[A1 \]
 \[\text{Substitute limits } u = 1 \text{ and } u = 2, \text{ having integrated twice or quoted} \int \ln u \, du \]
 \[\text{as } u \ln u \pm u \]
 \[M1^{(dep*)} \]
 \[\text{Obtain answer } 8 \ln 2 - 4, \text{ or exact equivalent} \]
 \[A1 \]
 \[\text{OR}3: \text{Integrate by parts and reach } I = \frac{x \ln x \pm x}{\sqrt{x}} + k \int \frac{x \ln x \pm x}{x^{1/2}} \, dx \]
 \[M1^* \]
 \[\text{Obtain } I = \frac{x \ln x - x}{\sqrt{x}} + \frac{1}{2} \int \frac{1}{\sqrt{x}} \, dx \]
 \[A1 \]
 \[\text{Integrate and obtain } I = 2\sqrt{x} \ln x - 4\sqrt{x}, \text{ or equivalent} \]
 \[A1 \]
 \[\text{Substitute limits } x = 1 \text{ and } x = 4, \text{ having integrated twice} \]
 \[M1^{(dep*)} \]
 \[\text{Obtain answer } 4\ln 4 - 4, \text{ or exact equivalent} \]
 \[A1 \]
4 Use correct product or quotient rule at least once

Obtain \(\frac{dy}{dt} = e^{-t} \sin t - e^{-t} \cos t \) or \(\frac{dy}{dt} = e^{-t} \cos t - e^{-t} \sin t \), or equivalent

Use \(\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt} \)

Obtain \(\frac{dy}{dx} = \frac{\sin t - \cos t}{\sin t + \cos t} \), or equivalent

\textit{EITHER:} Express \(\frac{dy}{dx} \) in terms of \(\tan t \) only

Show expression is identical to \(\tan\left(t - \frac{1}{4}\pi\right) \)

\textit{OR:} Express \(\tan\left(t - \frac{1}{4}\pi\right) \) in terms of \(\tan t \)

Show expression is identical to \(\frac{dy}{dx} \) [6]

5 (i) Use Pythagoras

Use the \(\sin 2A \) formula

Obtain the given result [3]

(ii) Integrate and obtain a \(k \ln \sin \theta \) or \(m \ln \cos \theta \) term, or obtain integral of the form \(\frac{1}{p} \ln \tan \theta \)

Obtain indefinite integral \(\frac{1}{2} \ln \sin \theta - \frac{1}{2} \ln \cos \theta \), or equivalent, or \(\frac{1}{2} \ln \tan \theta \)

Substitute limits correctly

Obtain the given answer correctly having shown appropriate working [4]

6 (i) State or imply \(AB = 2r \cos \theta \) or \(AB^2 = 2r^2 - 2r^2 \cos(\pi - 2\theta) \)

Use correct formula to express the area of sector \(ABC \) in terms of \(r \) and \(\theta \)

Use correct area formulae to express the area of a segment in terms of \(r \) and \(\theta \)

State a correct equation in \(r \) and \(\theta \) in any form

Obtain the given answer [5]

[SR: If the complete equation is approached by adding two sectors to the shaded area above \(BO \) and \(OC \) give the first M1 as on the scheme, and the second M1 for using correct area formulae for a triangle \(AOB \) or \(AOC \), and a sector \(AOB \) or \(AOC \).]

(ii) Use the iterative formula correctly at least once

Obtain final answer 0.95

Show sufficient iterations to 4 d.p. to justify 0.95 to 2 d.p., or show there is a sign change in the interval (0.945, 0.955) [3]
7 (i) State or imply partial fractions are of the form \[
\frac{A}{x-2} + \frac{Bx+C}{x^2+3}
\]
Use a relevant method to determine a constant M1
Obtain one of the values \(A = -1, B = 3, C = -1\) A1
Obtain a second value A1
Obtain the third value A1 [5]

(ii) Use correct method to obtain the first two terms of the expansions of \((x-2)^{-1}\),
\[
\left(1 - \frac{1}{2}x\right)^{-1}, \left(x^2 + 3\right)^{-1}
\]
Substitute correct unsimplified expansions up to the term in \(x^2\) into each partial fraction A1\(\sqrt{\text{+}}\)A1\(\sqrt{\text{+}}\)
Multiply out fully by \(Bx + C\), where \(BC \neq 0\) M1
Obtain final answer \(\frac{1}{6} + \frac{5}{4}x + \frac{17}{72}x^2\), or equivalent A1 [5]

[Symbolic binomial coefficients, e.g. \(\binom{-1}{1}\) are not sufficient for the M1. The f.t. is on \(A, B, C\).

[In the case of an attempt to expand \((2x^2 - 7x - 1)(x-2)^{-1}(x^2 + 3)^{-1}\), give M1A1A1 for the expansions, M1 for multiplying out fully, and A1 for the final answer.]

[If \(B\) or \(C\) omitted from the form of partial fractions, give B0M1A0A0A0 in (i); M1A1\(\sqrt{\text{+}}\)A1\(\sqrt{\text{+}}\) in (ii)]

8 (a) EITHER: Solve for \(u\) or for \(v\) M1

Obtain \(u = \frac{2i-6}{1-2i}\) or \(v = \frac{5}{1-2i}\), or equivalent A1

Either: Multiply a numerator and denominator by conjugate of denominator, or equivalent

Or: Set \(u\) or \(v\) equal to \(x + iy\), obtain two equations by equating real and imaginary parts and solve for \(x\) or for \(y\) M1

OR: Using \(a + ib\) and \(c + id\) for \(u\) and \(v\), equate real and imaginary parts and obtain

four equations in \(a, b, c\) and \(d\) M1

Obtain \(b + 2d = 2, a + 2c = 0, a + d = 0\) and \(-b + c = 3\), or equivalent A1

Solve for one unknown M1

Obtain final answer \(u = -2 - 2i\), or equivalent A1

Obtain final answer \(v = 1 + 2i\), or equivalent A1 [5]

(b) Show a circle with centre \(-i\) B1
Show a circle with radius 1 B1

Show correct half line from 2 at an angle of \(\frac{3}{4}\pi\) to the real axis B1

Use a correct method for finding the least value of the modulus M1

Obtain final answer \(\frac{3}{\sqrt{2}} - 1\), or equivalent, e.g. 1.12 (allow 1.1) A1 [5]
9 (i) EITHER: Obtain a vector parallel to the plane, e.g. \(\overrightarrow{AB} = -2i + 4j - k \)

Use scalar product to obtain an equation in \(a, b, c \), e.g. \(-2a + 4b - c = 0\),

\[3a - 3b + 3c = 0, \text{ or } a + b + 2c = 0\]

Obtain two correct equations in \(a, b, c \)

Solve to obtain ratio \(a : b : c \)

Obtain \(a:b:c = 3:1:-2 \), or equivalent

Obtain equation \(3x + y - 2z = 1 \), or equivalent

OR1: Substitute for two points, e.g. \(A \) and \(B \), and obtain \(2a - b + 2c = d \) and \(3b + c = d \)

Substitute for another point, e.g. \(C \), to obtain a third equation and eliminate one unknown entirely from the three equations

Obtain two correct equations in three unknowns, e.g. in \(a, b, c \)

Solve to obtain their ratio, e.g. \(a : b : c \)

Obtain \(a:b:c = 3:1:-2 \), \(a:c:d = 3:-2:1 \), \(a:b:d = 3:1:1 \) or \(b:c:d = -1:-2:1 \)

Obtain equation \(3x + y - 2z = 1 \), or equivalent

OR2: Obtain a vector parallel to the plane, e.g. \(\overrightarrow{BC} = 3i - 3j + 3k \)

Obtain a second such vector and calculate their vector product

\[e.g. (\overrightarrow{AC}) \times (\overrightarrow{BC})\]

Obtain two correct components of the product

Obtain correct answer, e.g. \(9i + 3j - 6k \)

Substitute in \(9x + 3y - 6z = d \) to find \(d \)

Obtain equation \(9x + 3y - 6z = 3 \), or equivalent

OR3: Obtain a vector parallel to the plane, e.g. \(\overrightarrow{AC} = i + j + 2k \)

Obtain a second such vector and form correctly a 2-parameter equation for the plane

Obtain a correct equation, e.g. \(r = 3i + 4k + \lambda(-2i + 4j - k) + \mu(i + j + 2k) \)

State three correct equations in \(x, y, z, \lambda, \mu \)

Eliminate \(\lambda \) and \(\mu \)

Obtain equation \(3x + y - 2z = 1 \), or equivalent

(ii) Obtain answer \(i + 2j + 2k \), or equivalent
(iii) EITHER: Use \[\frac{\overrightarrow{OA} \cdot \overrightarrow{OD}}{|\overrightarrow{OD}|} \] to find projection \(ON \) of \(OA \) onto \(OD \)

Obtain \(ON = \frac{4}{3} \)

Use Pythagoras in triangle \(OAN \) to find \(AN \)
Obtain the given answer

OR1: Calculate the vector product of \(\overrightarrow{OA} \) and \(\overrightarrow{OD} \)
Obtain answer \(6\mathbf{i} + 2\mathbf{j} - 5\mathbf{k} \)
Divide the modulus of the vector product by the modulus of \(\overrightarrow{OD} \)
Obtain the given answer

OR2: Taking general point \(P \) of \(OD \) to have position vector \(\lambda(\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}) \), form an equation in \(\lambda \) by either equating the scalar product of \(\overrightarrow{AP} \) and \(\overrightarrow{OP} \) to zero, or using Pythagoras in triangle \(OPA \), or setting the derivative of \(|\overrightarrow{AP}| \) to zero
Solve and obtain \(\lambda = \frac{4}{9} \)
Carry out method to calculate \(AP \) when \(\lambda = \frac{4}{9} \)
Obtain the given answer

OR3: Use a relevant scalar product to find the cosine of \(AOD \) or \(ADO \)
Obtain \(\cos AOD = \frac{4}{9} \) or \(\cos ADO = \frac{5}{3\sqrt{10}} \), or equivalent
Use trig to find the length of the perpendicular
Obtain the given answer

OR4: Use cosine formula in triangle \(AOD \) to find \(\cos AOD \) or \(\cos ADO \)
Obtain \(\cos AOD = \frac{8}{18} \) or \(\cos ADO = \frac{10}{6\sqrt{10}} \), or equivalent
Use trig to find the length of the perpendicular
Obtain the given answer

10 (i) State or imply \(V = \pi h^3 \)
State or imply \(\frac{dV}{dt} = -k\sqrt{h} \)
Use \(\frac{dV}{dt} = \frac{dV}{dh} \cdot \frac{dh}{dt} \), or equivalent
Obtain the given equation

[The M1 is only available if \(\frac{dV}{dh} \) is in terms of \(h \) and has been obtained by a correct method.]

[Allow B1 for \(\frac{dV}{dh} = k\sqrt{h} \) but withhold the final A1 until the polarity of the constant \(\frac{k}{3\pi} \) has been justified.]
(ii) Separate variables and integrate at least one side
 Obtain terms \(\frac{2}{5} h^2 \) and \(-At\), or equivalent
 Use \(t = 0, h = H \) in a solution containing terms of the form \(\frac{5}{2} ah^2 \) and \(bt + c \)
 Use \(t = 60, h = 0 \) in a solution containing terms of the form \(\frac{5}{2} ah^2 \) and \(bt + c \)
 Obtain a correct solution in any form, e.g. \(\frac{2}{5} h^2 = \frac{1}{150} \frac{5}{2} H^2 t + \frac{2}{5} \frac{5}{2} H^2 \)

(ii) Obtain final answer \(t = 60 \left(1 - \left(h \frac{5}{H} \right)^\frac{5}{2} \right) \), or equivalent

(iii) Substitute \(h = \frac{1}{2} H \) and obtain answer \(t = 49.4 \)