CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2013 series

9709 MATHEMATICS

9709/63 Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	63

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	63

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through √ marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	63

1 bars a	are not touching oe	B1		Sensible reason involving not touching, no
				gaps, class boundaries, group data not continuous (may be the negative)
Area labell	not rep by frequency, not used fd, not ed fd	B1	2	Must be frequency density oe. Wrong height not sufficient. (Best 2 reasons awarded)
2		N/1		Standardiana 1 ammarian na as na as nt na
P(13.6 < 2	$X < 14.8) = P\left(\frac{13.6 - 14}{0.52} < z < \frac{14.8 - 14}{0.52}\right)$	M1		Standardising 1 expression, no cc, no sq rt, no sq, \pm , mean on num.
`	0.7692 < z < 1.538	M1		$\Phi 1 + \Phi 2 - 1$ (indep) oe
	$1.538) - [1 - \Phi(0.7692)]$ $380 - [1 - 0.7791]$	A1		$(\Phi 2 - \Phi 1 \text{ if cc used})$ Correct probability rounding to 0.72 here
		M1		Binomial expression 10C8 p^8q^2 , $\Sigma p + q = 1$,
P(8) =	$= (0.7171)^8 (0.2829)^2_{10} C_8$	A1	5	any p Correct answer (rounding to 0.252)
=	= 0.252			
	(p =)0.85	B1		(p =)0.85 oe seen anywhere
=	P(<12) = 1 - P(12, 13, 14) = $1 - [(0.85)^{12}(0.15)^{2}_{14}C_{12} +$	M1		Summing 2 or 3 consistent bin probs, any
($ (0.85)^{13} (0.15)_{14} C_{13} + (0.85)^{14}] $ $ = 1 - 0.6479 $			p < 1, $n = 14$ (or summing 12 or 13 consistent bin probs)
	= 0.352	A1	3	Correct answer
(ii) ($(0.85)^n \ge 0.1$	M1		Eqn or inequality in 0.85 (or 0.15), n , 0.1 , n as
	$n \leq 14.2$	M1		a power Attempt to solve (can be implied) if <i>n</i> a power
	n = 14	A1	3	Correct answer – must be equals, not approx. MR allowed for 0.01, M1M1A0 max.
4 (i) ($(220 \times 20 + 118 \times 25)/45$ = 163	M1 A1	2	Mult by 20 and 25 and dividing their sum by 45 Correct answer, 163.3 or 490/3 oe acceptable
	$\sum_{i} x_o^2 / 20 - 220^2 = 32^2$ $\sum_{i} x_o^2 = 988480$	M1 A1		Subst in correct variance formula Correct Σx_0^2
	$\sum_{i} x_i^2 / 25 - 118^2 = 12^2$ $\sum_{i} x_i^2 = 351700$	A1		correct Σx_1^2
	$\Sigma x_o^2 + \Sigma x_l^2 = 1340180$ New var = 1340180/45 - (7350/45) ² = 3100 - 3120	M1 A1	5	Subst their combined results in correct var formula Correct answer

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	63

$P(X < q + 82) = 0.72$ $z = 0.583$ $\frac{\pm q}{7.4} \text{ or } \frac{\pm 2q}{7.4} = z \text{ or probabilty (o.e.)}$	M1 M1		Rounding to \pm 0.58 or \pm 0.15 seen Standardising, no cc, no sq, no sq rt
q = 4.31	A1	3	correct answer
$\frac{0.5\mu - \mu}{\sigma} = \frac{\pm 0.5\mu}{\sigma}$	M1		Standardising attempt some μ/σ allow cc, sq rt, sq Can be implied
$\frac{0.2\sigma^{2}}{\sigma} = -0.2\sigma = -0.580$	B1 M1		±0.580 seen (accept $\pm0.58)$ substituting to eliminate μ or σ , arriving at numerical solution, any z value or probability – not dependent
$\sigma = 2.90$ $\mu = 3.36$	A1	4	both answers correct, accept 2.9
8!	M1		8! Divided by at least one of 3!2!2! oe
= 1680	A1	2	Correct answer
5! = 120	M1 A1	2	5! Seen (not added, may be divided/multipled) Correct answer
5!4! 3!2!2!	B1		5! Or 4! Seen in sum or product in numerator (denominator may by 1) $\frac{k5!4!}{3!2!2!}$ in a numerical expression
= 120		3	3!2!2! Correct final answer
TA, TE, = 8 ways			Summing 2 options (could be lists) 1 correct option
Total = 12 ways	A1	3	Correct answer
	$z = 0.583$ $\frac{\pm q}{7.4} \text{ or } \frac{\pm 2q}{7.4} = z \text{ or probabilty (o.e.)}$ $q = 4.31$ $\frac{0.5\mu - \mu}{\sigma} = \frac{\pm 0.5\mu}{\sigma}$ $\frac{0.2\sigma^2}{\sigma} = -0.2\sigma = -0.580$ $\frac{8!}{3!2!2!}$ $= 1680$ $5!$ $= 120$ $\frac{5!4!}{3!2!2!}$ $= 120$ $GG \text{ with AA, AE, EE, RA, RE, RT, TA, TE, } = 8 \text{ ways}$ $GGG \text{ with A, E, R, T = 4 ways}$	z = 0.583	$z = 0.583$ $\frac{\pm q}{7.4} \text{ or } \frac{\pm 2q}{7.4} = z \text{ or probabilty (o.e.)}$ $q = 4.31$ $\frac{0.5\mu - \mu}{\sigma} = \frac{\pm 0.5\mu}{\sigma}$ $\frac{0.2\sigma^2}{\sigma} = -0.2\sigma = -0.580$ $\frac{8!}{3!2!2!}$ $= 1680$ $\frac{8!}{3!2!2!}$ $= 1680$ $\frac{5!}{9!2!2!}$ $= 120$ $\frac{5!4!}{3!2!2!}$ $= 120$ $\frac{5!4!}{3!2!2!}$ $= 120$ $\frac{5!4!}{3!2!2!}$ $= 120$ $\frac{6}{3!4!}$ $\frac{3!2!2!}{3!2!2!}$ $\frac{1}{3!2!2!}$ $\frac{1}{3!3!2!2!}$ $\frac{1}{3!3!2!2!}$ $\frac{1}{3!2!2!2!}$ $\frac{1}{3!3!2!2!2!2!2!2!2!2!2!2!2!2!2!3!3!2!2!2!3$

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	63

7 (i)	P(same) = P(1, 1) + P(3, 3) + P(5, 5)	M1		Summing 3 two-factor options
	$= \frac{2}{9} \times \frac{1}{8} + \frac{4}{9} \times \frac{3}{8} + \frac{3}{9} \times \frac{2}{8}$	M1		Multiplying terms by one less in the numerator or denominator
	= 5/18 (0.278)	A1	3	Correct answer
	Alt. method: $\frac{2C2+4C2+3C2}{9C2}$ or $\frac{2\times 1+3\times 4+2\times 3}{9C2\times 2}$ oe			M1 for numerator, M1 for denominator, A1 correct answer
(ii)	$P(5,\overline{5}) + P(\overline{5},5)$	M1 M1		Mult 2 probs whose numerators sum to 9 o.e. Summing 2 options or mult by 2 (may be 4 options)
	$= \frac{3}{9} \times \frac{6}{8} + \frac{6}{9} \times \frac{3}{8} = \frac{36}{72} = \frac{1}{2} \text{ or } 0.5$	A1	3	Correct answer
	Alt. method:			
	$\frac{6C1\times3C1(\times2)}{9C2(\times2)} oe$			M1 for numerator, M1 for denominator, A1 correct answer
(iii)	$P(5 \cap \overline{5}) = \frac{3}{9} \times \frac{6}{8} = \frac{1}{4}$	M1		Attempt at P(5 and not 5) seen as numerator or denominator of a fraction
	$P(\overline{5}) = \frac{1}{4} + \frac{6}{9} \times \frac{5}{8} = 48/72 = 0.6666$	M1		Attempt at P(not 5) sum of 2 two-factor terms seen anywhere
	$P(5_1 \overline{5}_2) = \frac{1/4}{48/72} = 3/8$	A1		Correct $P(\overline{5})$ as numerator or denominator in fraction
	= 0.375	A1	4	Correct answer
(iv)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1		Values 0, 1, 2 seen in table with at least 1 prob
	$P(0) = P(\overline{5}, \overline{5}) = \frac{6}{9} \times \frac{5}{8} = 30/72 $ (5/12) (0.4166)	B1		Correct P(0) unsimplified
	P(1) = 0.5 from part (ii)			
	P(2) = 6/72 (1/12) (0.0833) from part (i)	B1ft	3	If $x=0,1,2(,3)$ ft $\Sigma p=1$, no -ve values, all probabilities <1

