This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE®, Cambridge International A and AS Level components and some Cambridge O Level components.
Mark Scheme Notes

Marks are of the following three types:

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more “method” steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously “correct” answers or results obtained from incorrect working.

- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.

- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.
The following abbreviations may be used in a mark scheme or used on the scripts:

AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO Correct Answer Only (emphasising that no “follow through” from a previous error is allowed)
CWO Correct Working Only – often written by a ‘fortuitous’ answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become “follow through √” marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.
<table>
<thead>
<tr>
<th></th>
<th>Mark Scheme</th>
<th>Syllabus</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[7\cdot C_1 \times 2^6 \times a ; (=) ; 7\cdot C_2 \times 2^5 \times a^2] soi
[\frac{a}{\frac{7 \cdot 2^6}{2 \cdot 2^5}} = \frac{2}{3}] oe</td>
<td>B2, 1, 0</td>
<td>Treat the same error in each expression as a single error</td>
</tr>
<tr>
<td>2</td>
<td>[\tan^{-1}(3) = 1.249 ; or ; 71.565^\circ]
[\sin 1.25 ; or ; \sin 71.6 ; or ; 0.949 ; soi]
(x =) 1.95 cao, accept 1 + [\frac{3}{\sqrt{10}}] oe</td>
<td>M1</td>
<td>Attempt at tan^{-1}3 or right angle triangle with attempt at hypotenuse = \sqrt{10}</td>
</tr>
<tr>
<td></td>
<td>A1</td>
<td>M1</td>
<td>Answer only B3</td>
</tr>
<tr>
<td>3</td>
<td>[13\sin^2 \theta + 2\cos \theta + \cos^2 \theta = 4 + 2\cos \theta]
[13\sin^2 \theta + \sin \theta = 4 \rightarrow \sin^2 \theta = \frac{1}{4}]
or [13 - 13\cos^2 \theta + \cos^2 \theta = 4 \rightarrow \cos^2 \theta = \frac{3}{4}]
30º, 150º</td>
<td>M1</td>
<td>Attempt to multiply by 2 + \cos \theta</td>
</tr>
<tr>
<td></td>
<td>M1</td>
<td>Use of [s^2 + c^2] appropriately</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A1A1</td>
<td>SC both answers correct in radians, A1 only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F1</td>
<td>Ft on 180 – their first value of (\theta)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(i) [32 - 4k = 20 \Rightarrow k = 3]
[4b + 3 \times 2b = 20]
[b = 2]</td>
<td>M1A1</td>
<td>Sub (8, -4) [
alt: [(2b + 4)/(b - 8) = -4/k]</td>
</tr>
<tr>
<td></td>
<td>M1</td>
<td>Sub (b, 2b), [4b + 2b = 20]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A1</td>
<td>M1 both M1 solving A1, A1]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F1</td>
<td>Ft on (\text{their } b)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>[x^2 + x(k - 2) + (k - 2) = 0]
[(k - 2)^2 - 4(k - 2) (> 0) ; soi]
[(k - 2)(k - 6) (> 0)]
[k < 2 ; or ; k > 6 ; (\text{condone} \leq, \geq)]
Allow {-\infty, 2} U {6, \infty} etc.</td>
<td>M1</td>
<td>Equate and move terms to one side of equ.</td>
</tr>
<tr>
<td></td>
<td>M1</td>
<td>Apply (b^2 - 4ac (>0)). Allow (\geq) at this stage.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DM1</td>
<td>Attempt to factorise or solve or find 2 solns. SCA1 for 2, 6 seen with wrong inequalities</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(i) [AB = \pm(7i - 3j + k) - (3i + 2j - k) = \pm(4i - 5j + 2k)]
[AOAB = \pm(12 - 10 - 2) ; [\text{allow as column if total given}]]
[= 0 ; \text{hence } OAB = 90^\circ]</td>
<td>M1A1</td>
<td>May be seen in part (ii)</td>
</tr>
<tr>
<td></td>
<td>DM1</td>
<td>OR [AB^2 = 45, AO^2 = 14, OB^2 = 59]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A1</td>
<td>Hence (AB^2 + AO^2 = OB^2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F1</td>
<td>Hence (OAB = 90^\circ)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B1</td>
<td>At least one magnitude correct in (i) or (ii)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M1A1</td>
<td>Accept 12.6, [\frac{3\sqrt{70}}{2}] oe</td>
<td></td>
</tr>
</tbody>
</table>

© Cambridge International Examinations 2014
<table>
<thead>
<tr>
<th>Question</th>
<th>Part</th>
<th>Solution</th>
<th>Mark Scheme</th>
</tr>
</thead>
</table>
| 7 (i) | | \[S = \frac{a}{1-r}, \quad 3S = \frac{a}{1-2r} \]
\[1 - r = 3 - 6r \]
\[r = \frac{2}{5} \] | At least \(3S = \frac{a}{1-2r} \)
M1
A1 | [3] |
| (ii) | | \[7 + (n-1)d = 84 \] and/or \[7 + (3n-1)d = 245 \]
\[[(n-1)d = 77, \quad (3n-1)d = 238, \quad 2nd = 161] \]
\[\frac{n-1}{3n-1} = \frac{77}{238} \] (must be from the correct \(u_n \) formula)
\[n = 23 \quad (d = \frac{77}{22} = 3.5) \] | At least one of these equations seen
B1
B1
M1
Or other attempt to eliminate \(d \). E.g. sub \(d = \frac{161}{2n} \) (if \(n \) is eliminated \(d \) must be found) | A1 |
| 8 (i) | | \[\text{Arc } AB = 4\alpha \]
\[\text{Arc } DC = (4\cos \alpha)\alpha \]
\[AC \text{ or } DB = 4 - 4\cos \alpha \]
\[\text{Perimeter} = 4\alpha \cos \alpha + 4\alpha + 8 - 8\cos \alpha \] | B1
B1
B1
B1 | [4] |
| (ii) | | \[OD = 4\cos \frac{\pi}{6} = 2\sqrt{3} \]
Shaded area = \[\left[\frac{1}{2} \times 4^2 \times \frac{\pi}{6} \right] \left[-\frac{1}{2} \left(2\sqrt{3}\right)^2 \times \frac{\pi}{6} \right] \]
\[\frac{\pi}{3} \] | B1
B1B1
B1 | Or \(k = \frac{1}{3} \) | [4] |
| 9 (i) | | \[f'(2) = 4 - \frac{1}{2} = \frac{7}{2} \] → gradient of normal = \(-\frac{2}{7} \)
\[y - 6 = -\frac{2}{7}(x - 2) \]
AEF | B1M1
A1\(\checkmark \) | Ft from their \(f'(2) \) | [3] |
| (ii) | | \[f(x) = x^2 + \frac{2}{x} (+c) \]
\[6 = 4 + 1 + c \Rightarrow c = 1 \] | B1B1
M1A1 | Sub \((2, 6)\) – dependent on \(c \) being present | [4] |
| (iii) | | \[2x - \frac{2}{x^2} = 0 \Rightarrow 2x^3 - 2 = 0 \]
\[x = 1 \]
\[f''(x) = 2 + \frac{4}{x^3} \] or any valid method
\[f''(1) = 6 \quad \text{OR} \quad > 0 \quad \text{hence minimum} \] | M1
M1
A1 | Put \(f'(x) = 0 \) and attempt to solve
A1
Not necessary for last A mark as \(x > 0 \) given | [4] |

© Cambridge International Examinations 2014
Question 10

(i)

\[(x-1)^2 - 16\]

B1B1 [2]

(ii)

\[-16\]

B1 \[1\]

(iii)

\[9 \leq (x-1)^2 - 16 \leq 65\] OR \[x^2 - 2x - 15 = 9 \rightarrow 6, -4\]

\[25 \leq (x-1)^2 \leq 81\]

\[x^2 - 2x - 15 = 65 \rightarrow 10, -8\]

\[5 \leq x - 1 \leq 9\]

\[p = 6\]

\[6 \leq x \leq 10\]

\[q = 10\]

M1 M1 A1 [4]

(iv)

\[x = (y-1)^2 - 16\]

\[y-1 = (\pm) \sqrt{y+16}\]

\[f^{-1}(x) = 1 + \sqrt{x+16}\]

SC B2, B2 for trial/improvement

M1 OR \[(x-1)^2 = y + 16\]

M1 \[x = 1 + (\pm) \sqrt{y+16}\]

A1 \[f^{-1}(x) = 1 + \sqrt{x+16}\] [3]

Question 11

(i)

For \[y = (4x+1)^{\frac{1}{2}}\], \[\frac{dy}{dx} = \left[\frac{1}{2}(4x+1)^{\frac{1}{2}} \frac{1}{2}\right] \times [4]\]

When \[x = 2\], gradient \[m_1 = \frac{2}{3}\]

For \[y = \frac{1}{4} x^2 + 1\], \[\frac{dy}{dx} = x \rightarrow \text{gradient} \ m_2 = 2\]

\[\alpha = \tan^{-1} m_2 - \tan^{-1} m_1\]

\[\alpha = 63.43 - 33.69 = 29.7\]

cao

B1B1 B1 B1 \[6\]

(ii)

\[
\int (4x+1)^{\frac{1}{2}} \, dx = \left[\frac{(4x+1)^{\frac{3}{2}}}{2/3}\right] \div [4]
\]

\[
\int \left(\frac{1}{2} x^2 + 1\right) \, dx = \frac{1}{6} x^3 + x
\]

\[
\int (4x+1)^{\frac{1}{2}} \, dx = \frac{1}{6}[27-1], \quad \int \left(\frac{1}{2} x^2 + 1\right) \, dx = \left[\frac{x^3}{6} + 2\right]
\]

\[
\frac{13}{3} - \frac{10}{3}
\]

1

B1B1 B1 M1 A1 \[6\]

Apply limits \(0 \rightarrow 2\) to at least the 1st integral

Subtract the integrals (at some stage)