Cambridge International Advanced Level

MARK SCHEME for the October/November 2014 series

9709 MATHEMATICS

9709/32

Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9709	32

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9709	32

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Pa	age 4	L	Mark Scheme	Syllabus	Pap	er
			ridge International A Level – October/November 2014	9709	32	
1	Obta		begarithm of a power linear equation in any form, e.g. $x = (x - 2) \ln 3$ = 22.281		M1 A1 A1	[3]
2	(i)	Use correct	bly ordinates 2, 1.1547, 1, 1.1547 formula, or equivalent, with $h = \frac{1}{6}\pi$ and four ordinates		B1 M1	
	(ii)	-	wer 1.95 spisable sketch of $y = \operatorname{cosec} x$ for the given interval stement that the estimate will be an overestimate		A1 B1 B1	[3] [2]
3	and Subs Obta Solv	obtain a correction obtain $x = 2$			B1 M1 A1 M1 A1	[5]
4	(i) (ii)	Obtain eithe Use $\frac{dy}{dx} = \frac{dy}{dt}$ Obtain the g	given answer		M1 A1 M1 A1 B1	[4]
	(ii)	Use Pythag	ect equation for the tangent in any form oras given answer		M1 A1	[3]
5	(i)	Substitute z EITHER: OR:	$w = 1 + i \text{ and obtain } w = \frac{1+2i}{1+i}$ Multiply numerator and denominator by the conjugate of the denominator equivalent Simplify numerator to 3 + i or denominator to 2 Obtain final answer $\frac{3}{2} + \frac{1}{2}i$, or equivalent Obtain two equations in x and y, and solve for x or for y Obtain $x = \frac{3}{2}$ or $y = \frac{1}{2}$, or equivalent Obtain final answer $\frac{3}{2} + \frac{1}{2}i$, or equivalent	ominator,	B1 M1 A1 A1 M1 A1	[4]

Cambridge International A Level – October/November 2014EITHER:Substitute $w = z$ and obtain a 3-term quadratic equation in z , e.g. $iz^2 + z - i = 0$	Syllabus 9709	Pape 32	
e.g. $iz^2 + z - i = 0$			
6		B1	
Solve a 3-term quadratic for z or substitute $z = x + iy$ and use a comethod to solve for x and y		M1	
<i>OR</i> : Substitute $w = x + iy$ and obtain two correct equations in x and y b	by equating	D1	
real and imaginary parts Solve for x and y		B1 M1	
-		A1	
Obtain final answer $-\frac{\sqrt{5}}{2} + \frac{1}{2}i$		A1	[4]
Integrate and reach $bx \ln 2x - c \int x \cdot \frac{1}{x} dx$, or equivalent		M1*	
Obtain $x \ln 2x - \int x \cdot \frac{1}{x} dx$, or equivalent		A1	
~		A1	
Substitute limits correctly and equate to 1, having integrated twice	M1(0	lep*)	
· · ·		A1	
Obtain the given answer		A1	[6]
Use the iterative formula correctly at least once		M1	
Obtain final answer 1.94		A1	
Show sufficient iterations to 4 d.p. to justify 1.94 to 2d.p. or show that there is a change in the interval (1.935, 1.945).	sign	A1	[3]
Separate variables correctly and attempt to integrate at least one side		B1	
Obtain term lnR		B1	
	f 41 f - m		
	s of the form		
		A1	
	r		
$R = 33.6xe^{(0.285 - 0.57x)}$		A1	[6]
Equate $\frac{dR}{dx}$ to zero and solve for x		M1	
State or imply $x = 0.57^{-1}$, or equivalent, e.g. 1.75		A1	
Obtain $R = 28.8$ (allow 28.9)		A1	[3]
Use $sin(A + B)$ formula to express $sin3\theta$ in terms of trig. functions of 2θ and θ		M1	
	ınθ		
			[4]
SR: Give M1 for using correct formulae to express RHS in terms of $\sin\theta$ and co then M1A1 for expressing in terms of $\sin\theta$ and $\sin3\theta$ only, or in terms	os2 <i>θ</i> ,	A1	[4]
	Solve for x and y Debtain a correct solution in any form, e.g. $z = \frac{-1\pm\sqrt{3}}{2i}$ Debtain final answer $-\frac{\sqrt{3}}{2} + \frac{1}{2}i$ Integrate and reach $bx\ln 2x - c \int x \cdot \frac{1}{x} dx$, or equivalent Debtain $x\ln 2x - \int x \cdot \frac{1}{x} dx$, or equivalent Debtain $x\ln 2x - \int x \cdot \frac{1}{x} dx$, or equivalent Debtain integral $x\ln 2x - x$, or equivalent Debtain integral $x\ln 2x - x$, or equivalent Debtain a correct equation in any form, e.g. $a\ln 2a - a + 1 - \ln 2 = 1$ Debtain the given answer Use the iterative formula correctly at least once Debtain final answer 1.94 Show sufficient iterations to 4 d.p. to justify 1.94 to 2d.p. or show that there is a shange in the interval (1.935, 1.945). Separate variables correctly and attempt to integrate at least one side Debtain $x - 0.57x$ Evaluate a constant or use limits $x = 0.5$, $R = 16.8$, in a solution containing terms dnR and $blnxDebtain a correct expression for R, e.g. R = xe^{(3.80 - 0.57x)}, R = 44.7xe^{-0.57x} oR = 33.6xe^{(0.285 - 0.57x)}Equate \frac{dR}{dx} to zero and solve for xState or imply x = 0.57^{-1}, or equivalent, e.g. 1.75Debtain R = 28.8 (allow 28.9)Jse sin(A + B) formula to express sin 3\theta in terms of trig. functions of 2\theta and \thetaJse correct double angle formulae and Pythagoras to express sin 3\theta in terms of sin \theta and onDebtain a correct expression in terms of sin \theta in any formDebtain a correct deverse sin in terms of sin \theta in any formDistain a correct expression in terms of sin \theta in any formDistain a correct deverse sin z = 30.5 \ln \theta in any formDistain a correct deverse sin z = 30.5 \ln \theta in any formDistain a correct deverse sin z = 30.5 \ln \theta in any formDistain the given identitySR: Give M1 for using correct formulae to express RHS in terms of sin \theta and correct formulae and Pythagoras to express RHS in terms of sin \theta and correct formulae and Pythagoras to express RHS in terms of sin \theta and correct formulae and pythagoras to express RHS in terms of sin \theta and correct formulae an$	Solve for x and y Debtain a correct solution in any form, e.g. $z = \frac{-1\pm\sqrt{3}}{2i}$ Debtain final answer $-\frac{\sqrt{3}}{2} + \frac{1}{2}i$ Integrate and reach $bx\ln 2x - c\int x \cdot \frac{1}{x} dx$, or equivalent Debtain $x\ln 2x - \int x \cdot \frac{1}{x} dx$, or equivalent Debtain $x\ln 2x - \int x \cdot \frac{1}{x} dx$, or equivalent Debtain a correct equation in any form, e.g. $a\ln 2a - a + 1 - \ln 2 = 1$ Debtain the given answer Jse the iterative formula correctly at least once Debtain final answer 1.94 Show sufficient iterations to 4 d.p. to justify 1.94 to 2d.p. or show that there is a sign thange in the interval (1.935, 1.945). Separate variables correctly and attempt to integrate at least one side Debtain a correct solution in any form Debtain $R = 0.57x^{-1}$, or equivalent, e.g. 1.75 Detain $R = 28.8$ (allow 28.9) Jse $\sin(A + B)$ formula to express $\sin 3\theta$ in terms of trig. functions of 2θ and θ Jse correct double angle formulae and Pythagoras to express $\sin 3\theta$ in terms of $\sin \theta$ Debtain a correct expression in terms of $\sin \theta$ in any form Debtain a correct expression in terms of $\sin \theta$ in any form Debtain a correct double angle formulae to express RHS in terms of $\sin \theta$ and $\cos 2\theta$, hen M1A1 for expressing in terms of $\sin \theta$ and $\sin 3\theta$ only, or in terms	Solve for x and yM1Detain a correct solution in any form, e.g. $z = \frac{-1 \pm \sqrt{3}}{2i}$ A1Detain final answer $-\frac{\sqrt{3}}{2} + \frac{1}{2}i$ A1Detain final answer $-\frac{\sqrt{3}}{2} + \frac{1}{2}i$ A1Integrate and reach $bx \ln 2x - c \int x. \frac{1}{x} dx$, or equivalentM1*Detain integrate and reach $bx \ln 2x - c \int x. \frac{1}{x} dx$, or equivalentA1Detain integrate and reach $bx \ln 2x - c \int x. \frac{1}{x} dx$, or equivalentA1Detain integrate $x \ln 2x - x$, or equivalentA1Detain integrate $x \ln 2x - x$, or equivalentA1Detain integrate $x \ln 2x - x$, or equivalentA1Detain integrate $x \ln 2x - x$, or equivalentA1Detain integrate $x \ln 2x - x$, or equivalentA1Detain integrate $x \ln 2x - x$, or equivalentA1Detain integrate $x \ln 2x - x$, or equivalentA1Detain integrate $x \ln 2x - x$, or equivalentA1Detain integrate $x \ln 2x - x$, or equivalentA1Detain integrate $x \ln 2x - x$, or equivalentA1Substitute limits correctly and equate to 1, having integrated twiceM1(dep*)Detain interval (1.935, 1.945).A1Separate variables correctly and attempt to integrate at least one sideB1Detain ner $n R$ B1Detain ner $n - 0.57x$ B1Sequate a constant or use limits $x = 0.5$, $R = 16.8$, in a solution containing terms of the form $AR and blux$ A1Detain a correct expression for R , e.g. $R = xe^{(3.80 - 0.57x)}$, $R = 44.7xe^{-0.57x}$ or $R = 33.6xe^{(0.285 - 0.57x)}$ A1Squate $\frac{dR}{dx}$ to zero and

© Cambridge International Examinations 2014

	ige 6			labus	Pape	er
		Camb	bridge International A Level – October/November 2014 9	709	32	
	(ii)	Substitute f	for x and obtain the given answer		B1	[1]
	(11)	Substitute	for a une obtain the given answer		DI	[-]
	(iii)		a correct method to find a value of x		M1	
				1 + A1	+ A1	[4]
		[Solutions	with more than 3 answers can only earn a maximum of $A1 + A1$.]			
			A B C			
	(i)	State or imp	ply the form $\frac{A}{1-x} + \frac{B}{2-x} + \frac{C}{(2-x)^2}$		B1	
			ect method to determine a constant		M1	
			of $A = 2, B = -1, C = 3$		Al	
		Obtain a se			A1	
		Obtain a th			A1	[5]
		[The altern	ative form $\frac{A}{1-x} + \frac{Dx+E}{(2-x)^2}$, where $A = 2, D = 1, E = 1$ is marked			
		B1M1A1A	1A1 as above.]			
	(ii)	Use correct	t method to find the first two terms of the expansion			
			$(2-x)^{-1}, (2-x)^{-2}, (1-\frac{1}{2}x)^{-1}$ or $(1-\frac{1}{2}x)^{-2}$		M1	
			rect unsimplified expansions up to the term in x^2 tial fraction $A1\sqrt{+}$	$\Delta 1 / +$	Δ1./	
		-				
			al answer $\frac{9}{4} + \frac{5}{2}x + \frac{39}{16}x^2$, or equivalent		A1	[5]
		[Symbolic]	binomial coefficients, e.g. $\binom{-1}{1}$ are not sufficient for M1. The \checkmark is on A	, <i>B</i> , <i>C</i> .]		
		[For the A,	D, E form of partial fractions, give M1 A1 \checkmark A1 \checkmark for the expansions the			
		[For the A , $D \neq 0$, M	<i>D,E</i> form of partial fractions, give M1 A1 \checkmark A1 \checkmark for the expansions the [1 for multiplying out fully and A1 for the final answer.]			
		[For the $A_{,i}$ if $D \neq 0$, M [In the case	<i>D,E</i> form of partial fractions, give M1 A1 \checkmark A1 \checkmark for the expansions the [1] for multiplying out fully and A1 for the final answer.] e of an attempt to expand $(x^2 - 8x + 9)(1 - x)^{-1}(2 - x)^{-2}$, give M1A1A1 for			
		[For the $A_{,i}$ if $D \neq 0$, M [In the case	<i>D,E</i> form of partial fractions, give M1 A1 \checkmark A1 \checkmark for the expansions the [1 for multiplying out fully and A1 for the final answer.]			
		[For the A_{i} if $D \neq 0$, M [In the case the expansi	<i>D,E</i> form of partial fractions, give M1 A1 \checkmark A1 \checkmark for the expansions then [1 for multiplying out fully and A1 for the final answer.] e of an attempt to expand $(x^2 - 8x + 9)(1 - x)^{-1}(2 - x)^{-2}$, give M1A1A1 for ions, M1 for multiplying out fully, and A1 for the final answer.]			
0	(i)	[For the $A_{,i}$ if $D \neq 0$, M [In the case	<i>D,E</i> form of partial fractions, give M1 A1 \checkmark A1 \checkmark for the expansions then 11 for multiplying out fully and A1 for the final answer.] e of an attempt to expand $(x^2 - 8x + 9)(1 - x)^{-1}(2 - x)^{-2}$, give M1A1A1 for ions, M1 for multiplying out fully, and A1 for the final answer.] Find \overrightarrow{AP} (or \overrightarrow{PA}) for a point <i>P</i> on <i>l</i> with parameter λ ,			
0	(i)	[For the A_{i} if $D \neq 0$, M [In the case the expansi	<i>D,E</i> form of partial fractions, give M1 A1 \checkmark A1 \checkmark for the expansions then [1 for multiplying out fully and A1 for the final answer.] e of an attempt to expand $(x^2 - 8x + 9)(1 - x)^{-1}(2 - x)^{-2}$, give M1A1A1 for ions, M1 for multiplying out fully, and A1 for the final answer.]		B1	
0	(i)	[For the A_{i} if $D \neq 0$, M [In the case the expansi	<i>D,E</i> form of partial fractions, give M1 A1 \checkmark A1 \checkmark for the expansions then 11 for multiplying out fully and A1 for the final answer.] e of an attempt to expand $(x^2 - 8x + 9)(1 - x)^{-1}(2 - x)^{-2}$, give M1A1A1 for ions, M1 for multiplying out fully, and A1 for the final answer.] Find \overrightarrow{AP} (or \overrightarrow{PA}) for a point <i>P</i> on <i>l</i> with parameter λ , e.g. $\mathbf{i} - 17\mathbf{j} + 4\mathbf{k} + \lambda(-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$ Calculate scalar product of \overrightarrow{AP} and a direction vector for <i>l</i> and equate to	n,	M1	
0	(i)	[For the A_{i} if $D \neq 0$, M [In the case the expansi	<i>D,E</i> form of partial fractions, give M1 A1 \checkmark A1 \checkmark for the expansions then [1] for multiplying out fully and A1 for the final answer.] e of an attempt to expand $(x^2 - 8x + 9)(1 - x)^{-1}(2 - x)^{-2}$, give M1A1A1 for ions, M1 for multiplying out fully, and A1 for the final answer.] Find \overrightarrow{AP} (or \overrightarrow{PA}) for a point <i>P</i> on <i>l</i> with parameter λ , e.g. $\mathbf{i} - 17\mathbf{j} + 4\mathbf{k} + \lambda(-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$ Calculate scalar product of \overrightarrow{AP} and a direction vector for <i>l</i> and equate to Solve and obtain $\lambda = 3$	n,	M1 A1	
0	(i)	[For the A_{i} if $D \neq 0$, M [In the case the expansi	<i>D,E</i> form of partial fractions, give M1 A1 \checkmark A1 \checkmark for the expansions then 11 for multiplying out fully and A1 for the final answer.] e of an attempt to expand $(x^2 - 8x + 9)(1 - x)^{-1}(2 - x)^{-2}$, give M1A1A1 for ions, M1 for multiplying out fully, and A1 for the final answer.] Find \overrightarrow{AP} (or \overrightarrow{PA}) for a point <i>P</i> on <i>l</i> with parameter λ , e.g. $\mathbf{i} - 17\mathbf{j} + 4\mathbf{k} + \lambda(-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$ Calculate scalar product of \overrightarrow{AP} and a direction vector for <i>l</i> and equate to Solve and obtain $\lambda = 3$ Carry out a complete method for finding the length of <i>AP</i>	n,	M1 A1 M1	
0	(i)	[For the A_i] if $D \neq 0$, M [In the case the expansi <i>EITHER</i> :	<i>D,E</i> form of partial fractions, give M1 A1 \checkmark A1 \checkmark for the expansions then 11 for multiplying out fully and A1 for the final answer.] e of an attempt to expand $(x^2 - 8x + 9)(1 - x)^{-1}(2 - x)^{-2}$, give M1A1A1 for ions, M1 for multiplying out fully, and A1 for the final answer.] Find \overrightarrow{AP} (or \overrightarrow{PA}) for a point <i>P</i> on <i>l</i> with parameter λ , e.g. $\mathbf{i} - 17\mathbf{j} + 4\mathbf{k} + \lambda(-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$ Calculate scalar product of \overrightarrow{AP} and a direction vector for <i>l</i> and equate to Solve and obtain $\lambda = 3$ Carry out a complete method for finding the length of <i>AP</i> Obtain the given answer 15 correctly	n, o zero	M1 A1 M1 A1	
0	(i)	[For the A_{i} if $D \neq 0$, M [In the case the expansi	<i>D,E</i> form of partial fractions, give M1 A1 \checkmark A1 \checkmark for the expansions then 11 for multiplying out fully and A1 for the final answer.] e of an attempt to expand $(x^2 - 8x + 9)(1 - x)^{-1}(2 - x)^{-2}$, give M1A1A1 for ions, M1 for multiplying out fully, and A1 for the final answer.] Find \overrightarrow{AP} (or \overrightarrow{PA}) for a point <i>P</i> on <i>l</i> with parameter λ , e.g. $\mathbf{i} - 17\mathbf{j} + 4\mathbf{k} + \lambda(-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$ Calculate scalar product of \overrightarrow{AP} and a direction vector for <i>l</i> and equate to Solve and obtain $\lambda = 3$ Carry out a complete method for finding the length of <i>AP</i> Obtain the given answer 15 correctly Calling (4, -9, 9) <i>B</i> , state \overrightarrow{BA} (or \overrightarrow{AB}) in component form, e.g. $-\mathbf{i} + 17\mathbf{j}$	n, o zero	M1 A1 M1	
0	(i)	[For the A_i] if $D \neq 0$, M [In the case the expansi <i>EITHER</i> :	<i>D,E</i> form of partial fractions, give M1 A1 \checkmark A1 \checkmark for the expansions then 11 for multiplying out fully and A1 for the final answer.] e of an attempt to expand $(x^2 - 8x + 9)(1 - x)^{-1}(2 - x)^{-2}$, give M1A1A1 for ions, M1 for multiplying out fully, and A1 for the final answer.] Find \overrightarrow{AP} (or \overrightarrow{PA}) for a point <i>P</i> on <i>l</i> with parameter λ , e.g. $\mathbf{i} - 17\mathbf{j} + 4\mathbf{k} + \lambda(-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$ Calculate scalar product of \overrightarrow{AP} and a direction vector for <i>l</i> and equate to Solve and obtain $\lambda = 3$ Carry out a complete method for finding the length of <i>AP</i> Obtain the given answer 15 correctly Calling (4, -9, 9) <i>B</i> , state \overrightarrow{BA} (or \overrightarrow{AB}) in component form, e.g. $-\mathbf{i} + 17\mathbf{j}$ Calculate vector product of \overrightarrow{BA} and a direction vector for <i>l</i> ,	n, o zero	M1 A1 M1 A1 B1	
0	(i)	[For the A_i] if $D \neq 0$, M [In the case the expansi <i>EITHER</i> :	<i>D,E</i> form of partial fractions, give M1 A1 \checkmark A1 \checkmark for the expansions then 11 for multiplying out fully and A1 for the final answer.] e of an attempt to expand $(x^2 - 8x + 9)(1 - x)^{-1}(2 - x)^{-2}$, give M1A1A1 for ions, M1 for multiplying out fully, and A1 for the final answer.] Find \overrightarrow{AP} (or \overrightarrow{PA}) for a point <i>P</i> on <i>l</i> with parameter λ , e.g. $\mathbf{i} - 17\mathbf{j} + 4\mathbf{k} + \lambda(-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$ Calculate scalar product of \overrightarrow{AP} and a direction vector for <i>l</i> and equate to Solve and obtain $\lambda = 3$ Carry out a complete method for finding the length of <i>AP</i> Obtain the given answer 15 correctly Calling $(4, -9, 9)$ <i>B</i> , state \overrightarrow{BA} (or \overrightarrow{AB}) in component form, e.g. $-\mathbf{i} + 17\mathbf{j}$ Calculate vector product of \overrightarrow{BA} and a direction vector for <i>l</i> , e.g. $(-\mathbf{i} + 17\mathbf{j} - 4\mathbf{k}) \times (-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$	n, o zero	M1 A1 M1 A1 B1	
0	(i)	[For the A_i] if $D \neq 0$, M [In the case the expansi <i>EITHER</i> :	<i>D,E</i> form of partial fractions, give M1 A1 \checkmark A1 \checkmark for the expansions then 11 for multiplying out fully and A1 for the final answer.] e of an attempt to expand $(x^2 - 8x + 9)(1 - x)^{-1}(2 - x)^{-2}$, give M1A1A1 for ions, M1 for multiplying out fully, and A1 for the final answer.] Find \overrightarrow{AP} (or \overrightarrow{PA}) for a point <i>P</i> on <i>l</i> with parameter λ , e.g. $\mathbf{i} - 17\mathbf{j} + 4\mathbf{k} + \lambda(-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$ Calculate scalar product of \overrightarrow{AP} and a direction vector for <i>l</i> and equate to Solve and obtain $\lambda = 3$ Carry out a complete method for finding the length of <i>AP</i> Obtain the given answer 15 correctly Calling (4, -9, 9) <i>B</i> , state \overrightarrow{BA} (or \overrightarrow{AB}) in component form, e.g. $-\mathbf{i} + 17\mathbf{j}$ Calculate vector product of \overrightarrow{BA} and a direction vector for <i>l</i> , e.g. $(-\mathbf{i} + 17\mathbf{j} - 4\mathbf{k}) \times (-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$	n, o zero	M1 A1 A1 B1 M1 A1	
0	(i)	[For the A_i] if $D \neq 0$, M [In the case the expansi <i>EITHER</i> :	<i>D,E</i> form of partial fractions, give M1 A1 \checkmark A1 \checkmark for the expansions then 11 for multiplying out fully and A1 for the final answer.] e of an attempt to expand $(x^2 - 8x + 9)(1 - x)^{-1}(2 - x)^{-2}$, give M1A1A1 for ions, M1 for multiplying out fully, and A1 for the final answer.] Find \overrightarrow{AP} (or \overrightarrow{PA}) for a point <i>P</i> on <i>l</i> with parameter λ , e.g. $\mathbf{i} - 17\mathbf{j} + 4\mathbf{k} + \lambda(-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$ Calculate scalar product of \overrightarrow{AP} and a direction vector for <i>l</i> and equate to Solve and obtain $\lambda = 3$ Carry out a complete method for finding the length of <i>AP</i> Obtain the given answer 15 correctly Calling (4, -9, 9) <i>B</i> , state \overrightarrow{BA} (or \overrightarrow{AB}) in component form, e.g. $-\mathbf{i} + 17\mathbf{j}$ Calculate vector product of \overrightarrow{BA} and a direction vector for <i>l</i> , e.g. $(-\mathbf{i} + 17\mathbf{j} - 4\mathbf{k}) \times (-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$ Obtain correct answer, e.g. $-30\mathbf{i} + 6\mathbf{j} + 33\mathbf{k}$ Divide the modulus of the product by that of the direction vector	n, o zero	M1 A1 A1 B1 M1 A1 A1 M1	
0	(i)	[For the <i>A</i> , <i>i</i> if <i>D</i> ≠ 0, M [In the case the expansi <i>EITHER</i> : <i>OR</i> 1:	<i>D,E</i> form of partial fractions, give M1 A1 \checkmark A1 \checkmark for the expansions then 11 for multiplying out fully and A1 for the final answer.] e of an attempt to expand $(x^2 - 8x + 9)(1 - x)^{-1}(2 - x)^{-2}$, give M1A1A1 for ions, M1 for multiplying out fully, and A1 for the final answer.] Find \overrightarrow{AP} (or \overrightarrow{PA}) for a point <i>P</i> on <i>l</i> with parameter λ , e.g. $\mathbf{i} - 17\mathbf{j} + 4\mathbf{k} + \lambda(-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$ Calculate scalar product of \overrightarrow{AP} and a direction vector for <i>l</i> and equate to Solve and obtain $\lambda = 3$ Carry out a complete method for finding the length of <i>AP</i> Obtain the given answer 15 correctly Calling $(4, -9, 9)$ <i>B</i> , state \overrightarrow{BA} (or \overrightarrow{AB}) in component form, e.g. $-\mathbf{i} + 17\mathbf{j}$ Calculate vector product of \overrightarrow{BA} and a direction vector for <i>l</i> , e.g. $(-\mathbf{i} + 17\mathbf{j} - 4\mathbf{k}) \times (-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$ Obtain correct answer, e.g. $-30\mathbf{i} + 6\mathbf{j} + 33\mathbf{k}$ Divide the modulus of the product by that of the direction vector Obtain the given answer correctly	n, o zero	M1 A1 A1 B1 M1 A1 M1 A1	
0	(i)	[For the A_i] if $D \neq 0$, M [In the case the expansi <i>EITHER</i> :	<i>D,E</i> form of partial fractions, give M1 A1 \checkmark A1 \checkmark for the expansions ther [1] for multiplying out fully and A1 for the final answer.] e of an attempt to expand $(x^2 - 8x + 9)(1 - x)^{-1}(2 - x)^{-2}$, give M1A1A1 for ions, M1 for multiplying out fully, and A1 for the final answer.] Find \overrightarrow{AP} (or \overrightarrow{PA}) for a point <i>P</i> on <i>l</i> with parameter λ , e.g. $\mathbf{i} - 17\mathbf{j} + 4\mathbf{k} + \lambda(-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$ Calculate scalar product of \overrightarrow{AP} and a direction vector for <i>l</i> and equate to Solve and obtain $\lambda = 3$ Carry out a complete method for finding the length of <i>AP</i> Obtain the given answer 15 correctly Calculate vector product of \overrightarrow{BA} and a direction vector for <i>l</i> , e.g. $(-\mathbf{i} + 17\mathbf{j} - 4\mathbf{k}) \times (-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$ Obtain correct answer, e.g. $-30\mathbf{i} + 6\mathbf{j} + 33\mathbf{k}$ Divide the modulus of the product by that of the direction vector Obtain the given answer correctly State \overrightarrow{BA} (or \overrightarrow{AB}) in component form	n, o zero	M1 A1 M1 A1 B1 M1 A1 M1 A1 B1	
0	(i)	[For the <i>A</i> , <i>i</i> if <i>D</i> ≠ 0, M [In the case the expansi <i>EITHER</i> : <i>OR</i> 1:	<i>D,E</i> form of partial fractions, give M1 A1 \checkmark A1 \checkmark for the expansions the [1] for multiplying out fully and A1 for the final answer.] e of an attempt to expand $(x^2 - 8x + 9)(1 - x)^{-1}(2 - x)^{-2}$, give M1A1A1 for ions, M1 for multiplying out fully, and A1 for the final answer.] Find \overrightarrow{AP} (or \overrightarrow{PA}) for a point <i>P</i> on <i>l</i> with parameter λ , e.g. $\mathbf{i} - 17\mathbf{j} + 4\mathbf{k} + \lambda(-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$ Calculate scalar product of \overrightarrow{AP} and a direction vector for <i>l</i> and equate to Solve and obtain $\lambda = 3$ Carry out a complete method for finding the length of <i>AP</i> Obtain the given answer 15 correctly Calculate vector product of \overrightarrow{BA} and a direction vector for <i>l</i> , e.g. $(-\mathbf{i} + 17\mathbf{j} - 4\mathbf{k}) \times (-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$ Calculate vector product of \overrightarrow{BA} and a direction vector for <i>l</i> , e.g. $(-\mathbf{i} + 17\mathbf{j} - 4\mathbf{k}) \times (-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$ Obtain correct answer, e.g. $-30\mathbf{i} + 6\mathbf{j} + 33\mathbf{k}$ Divide the modulus of the product by that of the direction vector Obtain the given answer correctly State \overrightarrow{BA} (or \overrightarrow{AB}) in component form Use a scalar product to find the projection of <i>BA</i> (or <i>AB</i>) on <i>l</i>	n, o zero	M1 A1 A1 B1 M1 A1 M1 A1	
0	(i)	[For the <i>A</i> , <i>i</i> if <i>D</i> ≠ 0, M [In the case the expansi <i>EITHER</i> : <i>OR</i> 1:	<i>D,E</i> form of partial fractions, give M1 A1 \checkmark A1 \checkmark for the expansions ther [1] for multiplying out fully and A1 for the final answer.] e of an attempt to expand $(x^2 - 8x + 9)(1 - x)^{-1}(2 - x)^{-2}$, give M1A1A1 for ions, M1 for multiplying out fully, and A1 for the final answer.] Find \overrightarrow{AP} (or \overrightarrow{PA}) for a point <i>P</i> on <i>l</i> with parameter λ , e.g. $\mathbf{i} - 17\mathbf{j} + 4\mathbf{k} + \lambda(-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$ Calculate scalar product of \overrightarrow{AP} and a direction vector for <i>l</i> and equate to Solve and obtain $\lambda = 3$ Carry out a complete method for finding the length of <i>AP</i> Obtain the given answer 15 correctly Calculate vector product of \overrightarrow{BA} and a direction vector for <i>l</i> , e.g. $(-\mathbf{i} + 17\mathbf{j} - 4\mathbf{k}) \times (-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$ Obtain correct answer, e.g. $-30\mathbf{i} + 6\mathbf{j} + 33\mathbf{k}$ Divide the modulus of the product by that of the direction vector Obtain the given answer correctly State \overrightarrow{BA} (or \overrightarrow{AB}) in component form	n, o zero	M1 A1 M1 A1 B1 M1 A1 M1 A1 B1	

© Cambridge International Examinations 2014

Page 7		Mark Scheme	Syllabus	Pap	er
	Camb	ridge International A Level – October/November 2014	9709	32	
		Obtain the given answer correctly		A1	
C	DR3:	State BA (or AB) in component form		B1	
		Use a scalar product to find the cosine of <i>ABP</i>		M1	
		Obtain correct answer in any form, e.g. $\frac{27}{\sqrt{9}.\sqrt{306}}$		A1	
		Use trig. to find the perpendicular		M1	
		Obtain the given answer correctly		A1	
C	<i>PR</i> 4:	State \overrightarrow{BA} (or \overrightarrow{AB}) in component form		B1	
		Find a second point <i>C</i> on <i>l</i> and use the cosine rule in triangle <i>ABC</i>			
		cosine of angle A, B, or C, or use a vector product to find the area	of ABC	M1	
		Obtain correct answer in any form		A1	
		Use trig. or area formula to find the perpendicular		M1	
		Obtain the given answer correctly		A1	
C	PR5:	State correct AP (or PA) for a point P on l with parameter λ in an	ny form	B1	
		Use correct method to express AP^2 (or AP) in terms of λ		M1	
		Obtain a correct expression in any form,			
		e.g. $(1-2\lambda)^2 + (-17+\lambda)^2 + (4-2\lambda)^2$		A1	
		Carry out a method for finding its minimum (using calculus, algeb	ora		
		or Pythagoras)		M1	
		Obtain the given answer correctly		A1	[5]
(ii)	EITHER:			r	
		equate constant terms or equate the coefficient of λ to zero, obta	ining an		
		equation in a and b		M1*	
		Obtain a correct equation, e.g. $4a - 9b - 27 + 1 = 0$		A1 A1	
		Obtain a second correct equation, e.g. $-2a + b + 6 = 0$ Solve for <i>a</i> or for <i>b</i>	M1	(dep*)	
		Obtain $a = 2$ and $b = -2$	1011	A1	
C	DR:	Substitute coordinates of a point of l and obtain a correct equation	on	711	
Ũ		e.g. $4a - 9b = 26$,	B1	
		<i>EITHER</i> : Find a second point on <i>l</i> and obtain an equation in <i>a</i>	and <i>b</i>	M1*	
		Obtain a correct equation		A1	
		OR: Calculate scalar product of a direction vector for <i>l</i> and	d a vector		
		normal to the plane and equate to zero		M1*	
		Obtain a correct equation, e.g. $-2a + b + 6 = 0$		A1	
		Solve for <i>a</i> or for <i>b</i>	M1	(dep*)	
		Obtain $a = 2$ and $b = -2$		A1	[5]

