A golf ball B is projected from a point O on horizontal ground. Bhits the ground for the first time at a point 48 m away from O at time 2.4 s after projection. Calculate the angle of projection. [3]

A particle P of mass 0.2 kg is attached to one end of a light elastic string of natural length 0.8 m and modulus of elasticity 64 N. The other end of the string is attached to a fixed point A on a smooth horizontal surface. P is placed on the surface at a point 0.8 m from A. The particle P is then projected with speed 10 m s$^{-1}$ directly away from A.

(i) Calculate the distance AP when P is at instantaneous rest. [3]

(ii) Calculate the speed of P when it is 1.0 m from A. [3]

A small ball of mass m kg is projected vertically upwards with speed 14 m s$^{-1}$. The ball has velocity v m s$^{-1}$ upwards when it is x m above the point of projection. A resisting force of magnitude $0.02mv$ N acts on the ball during its upward motion.

(i) Show that, while the ball is moving upwards, \(\frac{500}{v+500} - 1 \) \(\frac{dv}{dx} = 0.02 \). [3]

(ii) Find the greatest height of the ball above its point of projection. [3]

A particle P is projected with speed 50 m s$^{-1}$ at an angle of 30$^\circ$ above the horizontal from a point O on a horizontal plane.

(i) Calculate the speed of P when it has been in motion for 4 s, and calculate another time at which P has this speed. [5]

(ii) Find the distance OP when P has been in motion for 4 s. [2]

Two light elastic strings each have one end attached to a fixed horizontal beam. One string has natural length 0.6 m and modulus of elasticity 12 N; the other string has natural length 0.7 m and modulus of elasticity 21 N. The other ends of the strings are attached to a small block B of weight W N. The block hangs in equilibrium d m below the beam, with both strings vertical (see diagram).

(i) Given that the tensions in the strings are equal, find d and W. [4]

The small block is now raised vertically to the point 0.7 m below the beam, and then released from rest.

(ii) Find the greatest speed of the block in its subsequent motion. [4]
6 A horizontal disc with a rough surface rotates about a fixed vertical axis which passes through the centre of the disc. A particle P of mass 0.2 kg is in contact with the surface and rotates with the disc, without slipping, at a distance 0.5 m from the axis. The greatest speed of P for which this motion is possible is $1.5 \, \text{m} \, \text{s}^{-1}$.

(i) Calculate the coefficient of friction between the disc and P. [2]

P is now attached to one end of a light elastic string, which is connected at its other end to a point on the vertical axis above the disc. The tension in the string is equal to half the weight of P. The disc rotates with constant angular speed $\omega \, \text{rad} \, \text{s}^{-1}$ and P rotates with the disc without slipping. P moves in a circle of radius 0.5 m, and the taut string makes an angle of 30° with the horizontal.

(ii) Find the greatest and least values of ω for which this motion is possible. [5]

(iii) Calculate the value of ω for which the disc exerts no frictional force on P. [2]

7 A uniform lamina $A\,B\,C$ is in the form of a major segment of a circle with centre O and radius 0.35 m. The straight edge of the lamina is AB, and angle $AOB = \frac{2}{3}\pi$ radians (see diagram).

(i) Show that the centre of mass of the lamina is 0.0600 m from O, correct to 3 significant figures. [6]

The weight of the lamina is 14 N. It is placed on a rough horizontal surface with A vertically above B and the lowest point of the arc BC in contact with the surface. The lamina is held in equilibrium in a vertical plane by a force of magnitude F N acting at A.

(ii) Find F in each of the following cases:

(a) the force of magnitude F N acts along AB; [2]

(b) the force of magnitude F N acts along the tangent to the circular arc at A. [3]