This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.
1 (a) (i) Sb;

(ii) Xe / B;

(iii) Sr / Te / A / D;

(iv) Sn and I / E and F;

(v) Sr / A; [5]

(b) any two from:
physical
niobium is
harder; stronger; higher mp/bp; higher density [2]
note: there has to be a comparison

any two from:
chemical
niobium is less reactive; forms coloured compounds; forms complex ions; its
compounds have catalytic properties; has more than one oxidation state; has more
than one valency electron; [2]
note: the response has to refer to or compare properties of both elements

[Total: 9]

2 (a) liquid; [1]

(b) (l) and (s); [1]
reversible sign; [1]
accept: X in equation
ignore: any compounds just look for state symbols
must be the same compound on both sides of equation

(c) boiling / condensation;
accept: evaporation or vaporisation

(d) (in region BC) solid melts / liquid boils (in region DE);
at one / fixed / sharp / single / specific temperature; [1]
[Total: 6]

3 (a) (i) correct structure of an isomer e.g. 2-chloropropane;

(ii) chlorine;
light / heat / lead tetraethyl; [1]

[Total: 7]
(iii) could produce 2-chloropropane; [1]
could produce HCl; [1]
or
could produce dichloropropanes = [2]

(b) (i) add silver nitrate / lead nitrate; [1]
yellow precipitate; [1]
note: do not insist on presence of dilute nitric acid

(ii) propanol / propan-1-ol; [1]

(c) (i) for A:
reaction slower;
decreased collision rate;
less bromobutane present / concentration of bromobutane less / less reacting
particles; [2]
any two
accept: reverse arguments for B

(ii) halogens Cl > Br > I reactivity / reactivity decreases down group; [1]
organic halides I > Br > Cl / reactivity increases down group; [1]
opposite without explanation = [1]

(iii) any three from:
less energy;
particles move slower;
less collisions / fewer particles have energy to react / fewer successful collisions;
slower rate; [3]

[Total: 15]

4 (a) \[C + O_2 \rightarrow CO_2 \] [1]

(b) (i) CO\(_2\) already formed (from C burning or from CaCO\(_3\)); [1]
then carbon reacts with carbon dioxide; [1]
or
\[C + CO_2 \rightarrow 2CO \] if equation not balanced = [1]

(ii) \[Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2 \] [2]
not balanced = [1]
not: reduction by carbon

(c) to remove / neutralise silica / silicon dioxide / silicon(IV) oxide / sand; [1]
reacts with limestone to form slag / calcium silicate; [1]
\[CaCO_3 + SiO_2 \rightarrow CaSiO_3 + CO_2 \] [1]
or \[CaO + SiO_2 \rightarrow CaSiO_3 \]
or \[CaCO_3 \rightarrow CaO + CO_2 \]
(d) (i) galvanising / galvanisation / sacrificial protection; [1]

(ii) sacrificial protection / zinc is sacrificed;
 zinc corrodes rather than iron;
 zinc is oxidised in preference to iron;
 zinc reacts with oxygen and / water in preference to iron;
 zinc more reactive / electropositive than iron;
 zinc loses electrons more readily than iron;
 electrons move on to iron
 any three [3]

[Total: 12]

5 (a) any two from:
 bleaching (wood pulp / silk / straw);
 manufacture of sulfuric acid / SO₃ / in Contact process;
 fumigating / sterilising; refrigerant; making dyes; making wine; insecticide;
 fungicide; [2]

(b) burn / heat / react sulfur;
 in air / oxygen; [1]
 or
 burn / heat / roast zinc sulfide or lead sulfide;
 in air / oxygen;

(c) from purple / pink; not: red [1]
 to colourless; not clear [1]

(d) number of moles of Na₂SO₃ = 3.15/126 = 0.025 [1]
 number of moles of SO₂ formed = 0.025 [1]
 volume of SO₂ = 0.025 x 24 = 0.6 dm³/litres or 600 cm³ [1]
 allow: ecf
 for 1.6 g of SO₂ [1] only
 if used 22.4 max [2]
 note: need correct units for last mark

[Total: 9]
6 (a) (i) correct arrow from negative terminal of battery or from anode; [1]

 (ii) from battery / power supply / cell; [1]
 from negative electrode of battery to external circuit;
 or from anode;
 from iodide ion losing electron or oxidation of anion;

 (iii) ions cannot move in solid / ions can move in liquid; [1]

(b) copper; [1]
 (changes to) sulfuric acid; [1]
 hydrogen; [1]
 (changes to) potassium hydroxide; [1]

(c) (i) \[2H^+ + 2e \rightarrow H_2\] [2]
 not balanced = [1]

 (ii) \[4OH^- \rightarrow O_2 + 2H_2O + 4e\] [1]

 (iii) water used up;

(d) it is a cell; [1]
 hydrogen reacts with oxygen;
 this reaction produces energy / is exothermic / produces flow of electrons / changes chemical energy to electrical energy; [1]

[Total: 15]

7 (a) (i) \[C_nH_{2n+1}OH\] [1]

 (ii) \[116 - 17 = 99, \ 2n + 1 = 99, \ n = 7\]
 for any evidence of working out
 \[C_7H_{15}OH\] [1]

 (iii) 4bps around C;
 1 bp on each hydrogen;
 2bps and 2nbps on oxygen;

(b) (i) increases yield / moves equilibrium to RHS / favours forward reaction; [1]
 high pressure favours side with smaller number of (gas) molecules; [1]

 (ii) any two from:
 higher temperature / catalyst causes faster reaction;
 comment about compromise conditions to give best rate and yield;
 at 250°C (lower temp) higher yield / forward reaction favoured;
 at 350°C (higher temp) lower yield / back reaction favoured; [3]
(c) (i) methanoic acid; [1]
correct SF showing all bonds; [1]
accept: -OH

(ii) methyl methanoate; [1]

[Total: 14]