This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.
1 (a) uranium / plutonium / thorium [1]

(b) graphite / carbon [1]

(c) platinum / titanium / mercury / gold
 NOT: carbon / graphite [1]

(d) helium [1]

(e) nitrogen / phosphorus [1]

(f) argon
 ACCEPT: any ion 2 + 8 + 8 e.g. K⁺ etc. [1]

(g) tellurium
 ACCEPT: correct symbol [1]

[Total: 7]

2 (a) Any three of:
 iron is harder
 iron has higher density
 ACCEPT: heavier or potassium lighter
 iron has higher mp or bp
 iron has higher tensile strength or stronger
 iron has magnetic properties
 NOTE: has to be comparison, e.g. iron is hard (0) but iron is harder (1)
 NOT: appearance e.g. shiny
 ACCEPT: comparative statements relating to potassium [3]

(b) potassium hydrogen (1) and potassium hydroxide (1)
 zinc hydrogen (1) and zinc oxide (1)
 copper no reaction (1) [5]

[Total: 8]
Question 3

(a) (i) fractional distillation
 (liquid) air

(ii) cracking / heat in presence of catalyst
 of alkane / petroleum
 to give an alkene and hydrogen
 OR: electrolysis
 named electrolyte
 hydrogen at cathode
 OR: from methane
 react water / steam
 heat catalyst
 only ACCEPT: water with methane or electrolysis

(b) (i) the pair with both graphs correct is C
 NOTE: mark (b)(ii) independent of (b)(i)

 (ii) high pressure favours side with lower volume / fewer moles
 this is RHS / product / ammonia
 %NH₃ / yield increases as pressure increases
 the forward reaction is exothermic
 exothermic reactions favoured by low temperatures
 %NH₃ / yield decreases as temperature increases
 ACCEPT: reverse arguments

 (iii) increases reaction rate
 ACCEPT: reduces activation energy
 OR: decreases the amount of energy particles need to react
 OR: economic rate at lower temperature so higher yield

[Total: 14]

Question 4

(a) (i) (mass at t =0) – (mass at t = 5)
 NOTE: must have mass at t = 5 not final mass

 (ii) fastest at origin
 slowing down between origin and flat section gradient = 0
 where gradient = 0
 three of above in approximately the correct positions

 (iii) 3 correct comments about gradient = 2
 2 correct comments about gradient = 1
 1 correct comment about gradient = 0

 (b) start at origin and smaller gradient
 same final mass just approximate rather than exact

[Total: 14]
(c)
(i) smaller surface area
lower collision rate

(ii) molecules have more energy
 collide more frequently / more molecules have enough energy to react

(d) number of moles of HCl in 40 cm3 of hydrochloric acid,
 concentration 2.0 mol / dm3 = 0.04 × 2.0 = 0.08
 maximum number of moles of CO$_2$ formed = 0.04
 mass of one mole of CO$_2$ = 44 g
 maximum mass of CO$_2$ lost = 0.04 × 44 = 1.76 g

[Total: 15]

5
(a)
(i) have same molecular formula / both are C$_2$H$_{12}$
 they have different structural formulae / different structures

(ii) CH$_3$-CH$_2$-CH=CH-CH$_3$ / any other correct isomer

(b)
(i) CH$_2$-(Br)-CH$_2$Br
 NOT: C$_2$H$_4$Br$_2$
 dibromoethane
 NOTE: numbers not required but if given must be 1, 2

(ii) CH$_3$-CH$_2$-CH$_3$
 NOT: C$_3$H$_8$
 propane

(iii) CH$_3$-CH$_2$-CH$_2$-OH / CH$_3$-CH$_2$-CH(OH)-CH$_3$
 butanol
 numbers not required but if given must be correct and match formula

(c)
(i) CH$_3$-CH=CH-CH$_2$-CH$_3$
 CH$_3$-CH=CH-CH$_3$

(ii) pink / purple
 colourless
 NOT: clear

(d) -CH$_2$-CH(CN)-CH$_2$-CH(CN)-
correct repeat unit CH$_2$-CH(CN)
 COND: at least 2 units in diagram
 continuation

[Total: 16]

© Cambridge International Examinations 2013
6 (a) (i) (attractive force between) positive ions and (negative) electrons opposite charges attract ONLY \[1\]
electrostatic attraction ONLY \[1\]

(ii) lattice / rows / layers of lead ions / cations / positive ions NOT: atoms / protons / nuclei can slide past each other / the bonds are non-directional \[1\]

(b) (i) anhydrous cobalt chloride becomes hydrated ACCEPT: hydrous \[1\]

(ii) carbon dioxide is acidic sodium hydroxide and calcium oxide are bases / alkalis \[1\]

(iii) Any two of:
water, calcium carbonate and sodium carbonate ACCEPT: sodium bicarbonate \[2\]

(c) number of moles of CO\(_2\) formed = \(\frac{2.112}{44} = 0.048\) \[1\]
number of moles of H\(_2\)O formed = \(\frac{0.432}{18} = 0.024\) \[1\]

\[x = 2 \text{ and } y = 1\] NOT: ecf from this line

formula is 2PbCO\(_3\).Pb(OH)\(_2\) / Pb(OH)\(_2\). 2PbCO\(_3\) \[1\]

[Total: 12]

7 (a) (i) hydrogen (atoms) replaced by (atoms) of a different element e.g. chlorine NOT: substitute \[1\]

(ii) light required \[1\]

(b) exothermic reaction gives out energy endothermic reaction absorbs takes in energy \[1\]

(c) bonds broken energy
C-H +412
Cl-Cl +242
total energy +654 \[1\]

bonds formed energy
C-Cl' -338
H-Cl' -431
total energy -769
energy change -115 negative sign indicates exothermic \[1\]

[Total: 8]