READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.

Answer all questions.
Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The structures of diamond and chlorine are shown below.

(a) Describe the structure of these two substances. Use the list of words to help you.

<table>
<thead>
<tr>
<th>covalent</th>
<th>diatomic</th>
<th>giant</th>
<th>macromolecule</th>
<th>molecule</th>
<th>structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>diamond</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chlorine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) The structure of a compound containing carbon and chlorine is shown below.

What is the molecular formula of this compound?

[1]

[4]
(c) Chlorine is a halogen.

(i) State the colour of chlorine.

... [1]

The table shows some properties of the halogens.

<table>
<thead>
<tr>
<th>element</th>
<th>boiling point / °C</th>
<th>density in liquid state / g per cm³</th>
<th>colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>fluorine</td>
<td>–188</td>
<td>1.51</td>
<td>yellow</td>
</tr>
<tr>
<td>chlorine</td>
<td>–35</td>
<td>1.56</td>
<td></td>
</tr>
<tr>
<td>bromine</td>
<td>–7</td>
<td>4.93</td>
<td>red-brown</td>
</tr>
<tr>
<td>iodine</td>
<td>+114</td>
<td></td>
<td>grey-black</td>
</tr>
</tbody>
</table>

Use the information in the table to answer the following questions.

(ii) Predict the density of liquid bromine.

... [1]

(iii) Describe the trend in boiling point of the halogens down the group.

... [1]

(d) (i) Complete the word equation for the reaction of bromine with aqueous potassium iodide.

bromine + potassium iodide → +

... [2]

(ii) Suggest why bromine does not react with aqueous potassium chloride.

... [1]

(e) Potassium chloride is an ionic substance but iodine is a molecular substance. How do most ionic and molecular substances differ in their

solubility in water? ..

..

electrical conductivity? ..

... [2]

[Total: 13]
2 Bromine is an element in Group VII of the Periodic Table.

(a) State the formula for a molecule of bromine.

(b) A teacher placed a small amount of liquid bromine in the bottom of a sealed gas jar of air. After two minutes red-brown fumes were seen just above the liquid surface. After one hour the red-brown colour had spread completely throughout the gas jar.

Use the kinetic particle model of matter to explain these observations.
3 The structures of some substances containing nitrogen are shown below.

A

\[
\begin{array}{c}
N \\
H \\
H \\
\end{array}
\]

B

\[
\begin{array}{c}
\text{K}^+ \\
\text{NO}_3^- \\
\text{K}^+ \\
\text{NO}_3^- \\
\text{K}^+ \\
\text{NO}_3^- \\
\text{K}^+ \\
\end{array}
\]

C

\[
\begin{array}{c}
\text{I} \\
\text{I} \\
\end{array}
\]

D

\[
\begin{array}{c}
\text{N} = \text{N} \\
\end{array}
\]

E

\[
\begin{array}{c}
\text{O} \\
\text{N} \\
\text{O} \\
\end{array}
\]

Answer the following questions by choosing from the structures A, B, C, D or E. You can use each structure once, more than once or not at all.

Which structure represents

(a) an acidic oxide,

(b) an ionic structure,

(c) a gas which turns damp red litmus paper blue,

(d) a compound which is formed under conditions of high temperature and pressure in car engines,

(e) a molecule containing halogen atoms,

(f) a salt?

[Total: 6]
4 The diagram shows a rotary lime kiln used to make lime from limestone. Limestone is fed in at the top of the kiln and lime comes out at the bottom.

(a) State the chemical name for lime?

(b) State the name of the type of chemical reaction that takes place in the kiln.

(c) Suggest why the air coming out of the kiln has a greater percentage of carbon dioxide than the air entering the kiln.

(d) State one use for lime.

(e) A student compared the rates of reaction of three metal carbonates. She measured the volume of gas released using the apparatus shown.

State one thing that must be kept constant if the rates of the three reactions are to be compared in a fair way.
(f) The graph shows the volume of carbon dioxide released when the three metal carbonates were heated.

(i) Which carbonate produced carbon dioxide at the highest rate?

(ii) What volume of carbon dioxide was produced by strontium carbonate in twelve minutes?

(iii) How do the rates of the reactions of these three metal carbonates relate to the position of calcium, strontium and barium in the Periodic Table?

(g) Describe how hydrochloric acid and limewater can be used to show that carbonate ions are present in calcium carbonate.

[Total: 12]
Iron is a transition element.

(a) State **three** properties of transition elements which are **not** shown by the Group I elements.

1. ..
2. ..
3. .. [3]

(b) The symbols for two isotopes of iron are shown below.

\[
\begin{array}{cc}
^{54}\text{Fe} & ^{57}\text{Fe} \\
_{26} & _{26}
\end{array}
\]

(i) How do these two isotopes differ in their atomic structure?
.. [1]

(ii) Determine the number of neutrons present in one atom of the isotope \(^{57}_{26}\text{Fe}\).
.. [1]

(iii) Determine the number of electrons in one \(\text{Fe}^{3+}\) ion?
.. [1]

(c) Pure iron rusts very easily.

Describe and explain **one** method of preventing rusting.

method ..

explain why this method works ..
.. [2]

(d) Iron can be recycled.

Explain **two** advantages of recycling metals.
..
..
..
..
..
..
..
..
..
..
..
..
[2]
(e) In the blast furnace, iron(III) oxide reacts with carbon monoxide.

\[
Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2
\]

Which substance gets reduced in this reaction?
Explain your answer.

<table>
<thead>
<tr>
<th>substance</th>
<th>explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(f) (i) Carbon monoxide is a pollutant gas produced in motor car engines.
State why carbon monoxide is formed.

... [1]

(ii) State one harmful effect of carbon monoxide.

... [1]

[Total: 14]
6 Concentrated hydrochloric acid can be electrolysed using the apparatus shown.

(a) Define the term *electrolysis*?

(b) What is the name given to the positive electrode?
Put a ring around the correct answer.

anion anode cathode cation electrolyte

(c) State the name of the gas given off at the negative electrode.

(d) Complete the following sentence about electrolysis using words from the list.

inert magnesium platinum reactive solid

Electrodes made of graphite or are generally used in electrolysis
because they are
(e) When concentrated hydrochloric acid is electrolysed, chlorine is released.

(i) Draw the shells and the electronic structure in an atom of chlorine.

(ii) Draw the electronic structure of a chlorine molecule.
Show only the outer electron shells.

(iii) Describe a test for chlorine.

<table>
<thead>
<tr>
<th>test</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>..............</td>
<td>..............</td>
</tr>
</tbody>
</table>

(f) Hydrochloric acid reacts with the base calcium hydroxide.

(i) Complete the word equation for this reaction.

hydrochloric acid + calcium hydroxide → +

 [2]

(ii) Hydrochloric acid also reacts with zinc.
Complete the symbol equation for this reaction.

\[
\text{Zn} + \text{HCl} \rightarrow \text{ZnCl}_2 + \text{......}
\]

[2]

[Total: 14]
7 The pie chart shows the composition of air.

(a) (i) What is the percentage of nitrogen in the air?
... [1]

(ii) Apart from nitrogen and oxygen, state the names of two gases present in unpolluted air.
... and ... [2]

(b) The percentage of oxygen in air can be found using the apparatus shown below.

Air is passed backwards and forwards over the heated copper using the syringes. The copper reacts with oxygen in the air.

\[
\text{copper + oxygen} \rightarrow \text{copper(II) oxide}
\]

As the experiment proceeds, suggest what happens to

(i) the total volume of air in the gas syringes,
.. [1]

(ii) the mass of the wire in the tube.
.. [1]

(c) State one use of copper.
.. [1]

[Total: 6]
8 Ethene, C_2H_4, is manufactured by cracking petroleum fractions.

(a) (i) What do you understand by the term fraction?

(ii) Complete the symbol equation for the manufacture of ethene from dodecane, $C_{12}H_{26}$.

$$C_{12}H_{26} \rightarrow C_2H_4 + \ldots \ldots$$

(b) Two fractions obtained from the distillation of petroleum are refinery gas and gasoline.
State one use of each of these fractions.

refinery gas ... [2]

gasoline .. [2]

(c) Ethene is an unsaturated hydrocarbon.
What do you understand by the following terms?

unsaturated .. [2]

hydrocarbon ... [2]

(d) Ethene is used to make ethanol.

(i) Which of these reactions is used to make ethanol from ethene?
Tick one box.

- catalytic addition of steam
- fermentation
- oxidation using oxygen
- reduction using hydrogen
(ii) Draw the structure of ethanol, showing all atoms and bonds.

(e) Ethene is used to make poly(ethene).
Complete the following sentences about this reaction.
Use words from the list below.

additions carbohydrates catalysts monomers polymers

The ethene molecules which join to form poly(ethene) are the …………………………….

The poly(ethene) molecules formed are ………………………………………………. [2]

[Total: 11]
<table>
<thead>
<tr>
<th>Group</th>
<th>I</th>
<th>II</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>He</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Li</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Be</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>Na</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>Mg</td>
<td>24</td>
</tr>
<tr>
<td>7</td>
<td>K</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td>Ca</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>Sc</td>
<td>21</td>
</tr>
<tr>
<td>10</td>
<td>Ti</td>
<td>22</td>
</tr>
<tr>
<td>11</td>
<td>V</td>
<td>23</td>
</tr>
<tr>
<td>12</td>
<td>Cr</td>
<td>24</td>
</tr>
<tr>
<td>13</td>
<td>Mn</td>
<td>25</td>
</tr>
<tr>
<td>14</td>
<td>Fe</td>
<td>26</td>
</tr>
<tr>
<td>15</td>
<td>Co</td>
<td>27</td>
</tr>
<tr>
<td>16</td>
<td>Ni</td>
<td>28</td>
</tr>
<tr>
<td>17</td>
<td>Cu</td>
<td>29</td>
</tr>
<tr>
<td>18</td>
<td>Zn</td>
<td>30</td>
</tr>
<tr>
<td>19</td>
<td>Ga</td>
<td>31</td>
</tr>
<tr>
<td>20</td>
<td>Ge</td>
<td>32</td>
</tr>
<tr>
<td>21</td>
<td>As</td>
<td>33</td>
</tr>
<tr>
<td>22</td>
<td>Se</td>
<td>34</td>
</tr>
<tr>
<td>23</td>
<td>Br</td>
<td>35</td>
</tr>
<tr>
<td>24</td>
<td>Kr</td>
<td>36</td>
</tr>
<tr>
<td>25</td>
<td>Rb</td>
<td>37</td>
</tr>
<tr>
<td>26</td>
<td>Sr</td>
<td>38</td>
</tr>
<tr>
<td>27</td>
<td>Y</td>
<td>39</td>
</tr>
<tr>
<td>28</td>
<td>Zr</td>
<td>40</td>
</tr>
<tr>
<td>29</td>
<td>Nb</td>
<td>41</td>
</tr>
<tr>
<td>30</td>
<td>Mo</td>
<td>42</td>
</tr>
<tr>
<td>31</td>
<td>Tc</td>
<td>43</td>
</tr>
<tr>
<td>32</td>
<td>Ru</td>
<td>44</td>
</tr>
<tr>
<td>33</td>
<td>Rh</td>
<td>45</td>
</tr>
<tr>
<td>34</td>
<td>Pd</td>
<td>46</td>
</tr>
<tr>
<td>35</td>
<td>Ag</td>
<td>47</td>
</tr>
<tr>
<td>36</td>
<td>Cd</td>
<td>48</td>
</tr>
<tr>
<td>37</td>
<td>In</td>
<td>49</td>
</tr>
<tr>
<td>38</td>
<td>Sn</td>
<td>50</td>
</tr>
<tr>
<td>39</td>
<td>Sb</td>
<td>51</td>
</tr>
<tr>
<td>40</td>
<td>Te</td>
<td>52</td>
</tr>
<tr>
<td>41</td>
<td>I</td>
<td>53</td>
</tr>
<tr>
<td>42</td>
<td>Xe</td>
<td>54</td>
</tr>
<tr>
<td>55</td>
<td>Cs</td>
<td>56</td>
</tr>
<tr>
<td>56</td>
<td>Ba</td>
<td>57</td>
</tr>
<tr>
<td>57</td>
<td>La</td>
<td>58</td>
</tr>
<tr>
<td>58</td>
<td>Ce</td>
<td>59</td>
</tr>
<tr>
<td>59</td>
<td>Pr</td>
<td>60</td>
</tr>
<tr>
<td>60</td>
<td>Nd</td>
<td>61</td>
</tr>
<tr>
<td>61</td>
<td>Pm</td>
<td>62</td>
</tr>
<tr>
<td>62</td>
<td>Sm</td>
<td>63</td>
</tr>
<tr>
<td>63</td>
<td>Eu</td>
<td>64</td>
</tr>
<tr>
<td>64</td>
<td>Gd</td>
<td>65</td>
</tr>
<tr>
<td>65</td>
<td>Tb</td>
<td>66</td>
</tr>
<tr>
<td>66</td>
<td>Dy</td>
<td>67</td>
</tr>
<tr>
<td>67</td>
<td>Ho</td>
<td>68</td>
</tr>
<tr>
<td>68</td>
<td>Er</td>
<td>69</td>
</tr>
<tr>
<td>69</td>
<td>Tm</td>
<td>70</td>
</tr>
<tr>
<td>70</td>
<td>Yb</td>
<td>71</td>
</tr>
<tr>
<td>71</td>
<td>Lu</td>
<td>72</td>
</tr>
</tbody>
</table>

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.)