CHEMISTRY

Paper 1 Multiple Choice

Additional Materials: Multiple Choice Answer Sheet
Soft clean eraser
Soft pencil (type B or HB recommended)

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.
Do not use staples, paper clips, glue or correction fluid.
Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.
DO NOT WRITE IN ANY BARCODES.

There are forty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D.
Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.
Any rough working should be done in this booklet.
A copy of the Periodic Table is printed on page 16.
Electronic calculators may be used.
1 A purple pill is placed in a beaker of water. The beaker is left for several hours.

The diagram shows the appearance of the water when the pill is added and several hours later.

Which statement explains why this change occurs?
A Diffusion occurs because the pill is coloured.
B Diffusion occurs faster at higher temperatures.
C Diffusion occurs from an area of high concentration to one of lower concentration.
D Gases diffuse faster than liquids.

2 The results of two tests on solution X are shown.

<table>
<thead>
<tr>
<th>reagent added</th>
<th>observation on adding a few drops of reagent</th>
<th>observation on adding an excess of reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>aqueous sodium hydroxide</td>
<td>white precipitate</td>
<td>precipitate dissolves</td>
</tr>
<tr>
<td>aqueous ammonia</td>
<td>white precipitate</td>
<td>precipitate remains</td>
</tr>
</tbody>
</table>

Which ion is present in solution X?
A Al\(^{3+}\) B Ca\(^{2+}\) C Cu\(^{2+}\) D Zn\(^{2+}\)

3 Which diagram shows the arrangement of particles inside a balloon containing a mixture of the gases nitrogen and oxygen?

A

B

C

D

(key: ● nitrogen atom ○ oxygen atom)
4 A student follows the rate of the reaction between marble chips, CaCO₃, and dilute hydrochloric acid.

\[\text{CaCO}_3 + 2\text{HCl} \rightarrow \text{CaCl}_2 + \text{CO}_2 + \text{H}_2\text{O} \]

Which diagrams show apparatus that is suitable for this experiment?

A 1 and 2 only B 1 and 3 C 1 and 4 only D 1, 2 and 4

5 Equal masses of methane gas are stored under different conditions.

Under which set of conditions does the methane gas occupy the smallest volume?

A 0 °C and atmospheric pressure B 0 °C and twice atmospheric pressure C 30 °C and atmospheric pressure D 30 °C and twice atmospheric pressure
6 A particle of an isotope of sulfur contains 18 neutrons and 18 electrons.

What is the symbol for this particle?

A $^{34}_{16}S^{2+}$ B $^{34}_{16}S$ C $^{34}_{16}S^{2-}$ D $^{36}_{16}S$

7 When two elements react together, a compound is formed.

Which statement is correct?

A Equal masses of the elements must be used.
B The compound shows similar chemical properties to those of the elements.
C The elements must both be non-metals.
D When the elements react together, ionic or covalent compounds form.

8 Which statement is correct for all ionic compounds?

A They dissolve in water.
B They are formed when metals share electrons with non-metals.
C They conduct electricity in the molten state.
D They conduct electricity in the solid state.

9 When a piece of sodium is heated in air, it reacts with oxygen to form the ionic compound sodium oxide, Na_2O.

In terms of electrons, which statement correctly explains what happens when sodium reacts with oxygen?

A An oxygen atom shares two electrons with two sodium atoms.
B A sodium atom loses two electrons which are transferred to an oxygen atom.
C A sodium atom shares its outer shell electron with two oxygen atoms.
D Two sodium atoms each lose one electron which are both transferred to one oxygen atom.

10 The relative atomic mass of chlorine is 35.5.

What is the mass of 2 moles of chlorine gas?

A 17.75 g B 35.5 g C 71 g D 142 g
11 The empirical formula of a liquid compound is \(\text{C}_2\text{H}_4\text{O} \).

To find the empirical formula, it is necessary to know
A the density of the compound.
B the percentage composition by mass of the compound.
C the relative molecular mass of the compound.
D the volume occupied by 1 mole of the compound.

12 25.0 g of hydrated copper(II) sulfate crystals are heated to produce anhydrous copper(II) sulfate and water vapour.

\[
\text{CuSO}_4.5\text{H}_2\text{O}(s) \rightarrow \text{CuSO}_4(s) + 5\text{H}_2\text{O}(g)
\]

What is the mass of anhydrous copper(II) sulfate formed?

\[
M_r: \text{CuSO}_4, 160; \quad \text{H}_2\text{O}, 18
\]

A 9.0 g
B 16.0 g
C 22.5 g
D 25.0 g

13 One mole of an organic compound, \(\text{Q} \), is completely burnt in oxygen and produces exactly three moles of water.

Which compound is \(\text{Q} \)?

A butane, \(\text{C}_4\text{H}_{10} \)
B ethanol, \(\text{C}_2\text{H}_5\text{OH} \)
C propane, \(\text{C}_3\text{H}_8 \)
D propanol, \(\text{C}_3\text{H}_7\text{OH} \)

14 Aluminium is produced by the electrolysis of molten aluminium oxide.

What is the correct equation for the reaction at the positive electrode?

A \(\text{Al} \rightarrow \text{Al}^{3+} + 3\text{e}^- \)
B \(\text{Al}^{3+} + 3\text{e}^- \rightarrow \text{Al} \)
C \(\text{O}_2 + 4\text{e}^- \rightarrow 2\text{O}^{2-} \)
D \(2\text{O}^{2-} \rightarrow \text{O}_2 + 4\text{e}^- \)
15 When aqueous copper(II) sulfate is electrolysed using copper electrodes, which observations are correct?

<table>
<thead>
<tr>
<th></th>
<th>positive electrode</th>
<th>negative electrode</th>
<th>intensity of blue colour of electrolyte</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>electrode becomes smaller</td>
<td>electrode becomes bigger</td>
<td>constant</td>
</tr>
<tr>
<td>B</td>
<td>electrode becomes smaller</td>
<td>gas given off</td>
<td>fades</td>
</tr>
<tr>
<td>C</td>
<td>gas given off</td>
<td>electrode becomes bigger</td>
<td>fades</td>
</tr>
<tr>
<td>D</td>
<td>gas given off</td>
<td>gas given off</td>
<td>constant</td>
</tr>
</tbody>
</table>

16 Three different solutions were electrolysed using inert electrodes.
- solution 1: aqueous sodium chloride
- solution 2: concentrated hydrochloric acid
- solution 3: dilute sulfuric acid

Which solutions produce hydrogen at the negative electrode?
A 1, 2 and 3 B 1 and 2 only C 1 only D 2 and 3 only

17 Under certain conditions nitrogen reacts with oxygen to form N₂O.

\[
2\text{N}_2(g) + \text{O}_2(g) \rightleftharpoons 2\text{N}_2\text{O}(g)
\]

The energy profile diagram for this reaction is shown.

[Diagram showing energy profile with +447 kJ/mol and +164 kJ/mol]

What is the activation energy for the reverse reaction?
A \(-447\) kJ/mol B \(-283\) kJ/mol C \(+141.5\) kJ/mol D \(+283\) kJ/mol
18 The formation of liquid water from hydrogen and oxygen may occur in three stages.

1 \[2\text{H}_2(\text{g}) + \text{O}_2(\text{g}) \rightarrow 4\text{H}(\text{g}) + 2\text{O}(\text{g}) \]

2 \[4\text{H}(\text{g}) + 2\text{O}(\text{g}) \rightarrow 2\text{H}_2\text{O}(\text{g}) \]

3 \[2\text{H}_2\text{O}(\text{g}) \rightarrow 2\text{H}_2\text{O}(\text{l}) \]

Which stages are endothermic?

A 1, 2 and 3 B 1 only C 2 only D 3 only

19 Sulfur trioxide is produced by the following reaction.

\[2\text{SO}_2(\text{g}) + \text{O}_2(\text{g}) \rightleftharpoons 2\text{SO}_3(\text{g}) \quad \Delta H = -195 \text{kJ} \]

Which change in conditions would produce a greater amount of \(\text{SO}_3 \) at equilibrium?

A adding a catalyst
B increasing the pressure
C increasing the temperature
D removing some \(\text{SO}_2 \) and \(\text{O}_2 \)

20 A chemist investigated the rate of the reaction between ethene and hydrogen using a nickel catalyst.

\[\text{C}_2\text{H}_4(\text{g}) + \text{H}_2(\text{g}) \xrightarrow{\text{Ni}} \text{C}_2\text{H}_6(\text{g}) \]

The chemist carried out three experiments under different conditions.

<table>
<thead>
<tr>
<th>experiment number</th>
<th>pressure / atmospheres</th>
<th>particle size of catalyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>powder</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>powder</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>large pieces</td>
</tr>
</tbody>
</table>

Which row is correct?

A comparison of the rates of experiments 1 and 2 B comparison of the rates of experiments 1 and 3

A 1 greater than 2 B 1 greater than 2 C 2 greater than 1 D 2 greater than 1
21 Which change always occurs when a metal atom is oxidised?
 A It becomes positively charged.
 B It combines with oxygen.
 C It gains an electron.
 D It gains a proton.

22 Which statement is correct?
 A Ammonia is produced when an ammonium salt is warmed with a dilute acid.
 B Amphoteric oxides are oxides of certain metals.
 C A neutral solution does not contain hydroxide ions.
 D Soil with a high pH can be neutralised by adding lime, Ca(OH)₂.

23 Which reagent can be used to react with dilute hydrochloric acid to prepare silver chloride?
 A aqueous silver nitrate
 B solid silver
 C solid silver carbonate
 D solid silver oxide

24 The table shows some symbols and their meanings.

<table>
<thead>
<tr>
<th>symbol</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>→</td>
<td>reaction goes to completion</td>
</tr>
<tr>
<td>⇄</td>
<td>reaction is reversible</td>
</tr>
<tr>
<td>cat</td>
<td>catalyst required for reaction</td>
</tr>
<tr>
<td>cat</td>
<td>no catalyst is required for reaction</td>
</tr>
</tbody>
</table>

Which symbols should be used in the equation for the Haber process?
 A → and cat B → and cat C ⇄ and cat D ⇄ and cat
25 Nitrogenous fertilisers can cause eutrophication to occur in rivers. Eutrophication involves the five stages listed.

1 The fertiliser is washed into the river.
2 Oxygen levels become depleted in the river.
3 Plants die.
4 Plants begin to decay.
5 Plants in the river grow at an increased rate.

In which order do these five stages occur during eutrophication?

<table>
<thead>
<tr>
<th></th>
<th>first</th>
<th></th>
<th></th>
<th></th>
<th>last</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

26 Three suggested uses of sulfuric acid are listed.

1 as battery acid
2 to make ammonia from ammonium salts
3 to make fertilisers

Which are correct uses of sulfuric acid?

A 1, 2 and 3 B 1 and 2 only C 1 and 3 only D 2 and 3 only

27 The total number of electrons in one atom of element Q is 17 and in one atom of element R is 19.

Which statement about elements Q and R is correct?

A Q and R react together to form a covalent compound.
B Q forms positive ions.
C R has more outer shell electrons than Q.
D R is more metallic than Q.
28 Which row shows the correct catalyst for each industrial process?

<table>
<thead>
<tr>
<th></th>
<th>manufacture of sulfuric acid</th>
<th>manufacture of ammonia</th>
<th>manufacture of margarine</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>nickel</td>
<td>iron</td>
<td>vanadium(V) oxide</td>
</tr>
<tr>
<td>B</td>
<td>nickel</td>
<td>vanadium(V) oxide</td>
<td>iron</td>
</tr>
<tr>
<td>C</td>
<td>vanadium(V) oxide</td>
<td>iron</td>
<td>nickel</td>
</tr>
<tr>
<td>D</td>
<td>vanadium(V) oxide</td>
<td>nickel</td>
<td>iron</td>
</tr>
</tbody>
</table>

29 Which metal is attached to underground pipes made of iron, to provide sacrificial protection from corrosion?

A Ag B Cu C Mg D Pb

30 The diagram shows a circuit used to test the electrical conductivity of strips of solid materials. If the material conducts, the bulb lights.

Strips of brass, nylon and zinc are each tested separately by connecting them into the circuit.

For which strips does the bulb light?

A brass, nylon and zinc
B brass and nylon only
C nylon and zinc only
D zinc and brass only
31 Octane, C₈H₁₈, is a hydrocarbon that undergoes combustion in a petrol engine.

\[W \cdot C_8H_{18} + X \cdot O_2 \rightarrow Y \cdot CO_2 + Z \cdot H_2O \]

Which row shows the figures needed to balance the equation?

<table>
<thead>
<tr>
<th></th>
<th>W</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>17</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>16</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>25</td>
<td>16</td>
<td>18</td>
</tr>
</tbody>
</table>

32 The diagram shows part of the carbon cycle.

What are processes P, Q and R?

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>Q</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>combustion</td>
<td>photosynthesis</td>
<td>respiration</td>
</tr>
<tr>
<td>B</td>
<td>photosynthesis</td>
<td>combustion</td>
<td>respiration</td>
</tr>
<tr>
<td>C</td>
<td>respiration</td>
<td>combustion</td>
<td>photosynthesis</td>
</tr>
<tr>
<td>D</td>
<td>respiration</td>
<td>photosynthesis</td>
<td>combustion</td>
</tr>
</tbody>
</table>
CFC compounds were used as aerosol propellants. The structure of one CFC compound is shown.

```
F  C  H
  Cl
```

Which element in this compound causes a depletion of ozone in the atmosphere?

A carbon
B chlorine
C fluorine
D hydrogen

What is removed or destroyed when water is desalinated to make it drinkable?

A bad odours
B harmful bacteria
C sodium chloride
D solid particles

Compounds S and T both contain two elements only. The compounds have the following properties.

- They both burn in air to form carbon dioxide and water only.
- They both react with chlorine by substitution.
- S has a higher boiling point than T.

What could compounds S and T be?

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ethane</td>
<td>propane</td>
</tr>
<tr>
<td>B</td>
<td>ethene</td>
<td>propene</td>
</tr>
<tr>
<td>C</td>
<td>propane</td>
<td>ethane</td>
</tr>
<tr>
<td>D</td>
<td>propene</td>
<td>ethene</td>
</tr>
</tbody>
</table>
36 Which row correctly describes alkenes?

<table>
<thead>
<tr>
<th></th>
<th>general formula</th>
<th>result when shaken with aqueous bromine</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C_nH_{2n+2}</td>
<td>no change</td>
</tr>
<tr>
<td>B</td>
<td>C_nH_{2n+2}</td>
<td>the aqueous bromine is decolourised</td>
</tr>
<tr>
<td>C</td>
<td>C_nH_{2n}</td>
<td>no change</td>
</tr>
<tr>
<td>D</td>
<td>C_nH_{2n}</td>
<td>the aqueous bromine is decolourised</td>
</tr>
</tbody>
</table>

37 The table contains statements about processes by which ethanol is produced on a large scale from ethene and from glucose.

<table>
<thead>
<tr>
<th></th>
<th>from ethene</th>
<th>from glucose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>reaction is faster at 300 °C than at 200 °C</td>
<td>reaction is faster at 100 °C than at 30 °C</td>
</tr>
<tr>
<td>2</td>
<td>produces pure ethanol</td>
<td>produces a dilute aqueous solution of ethanol</td>
</tr>
<tr>
<td>3</td>
<td>uses a catalyst</td>
<td>uses a catalyst</td>
</tr>
<tr>
<td>4</td>
<td>uses steam</td>
<td>produces carbon dioxide</td>
</tr>
</tbody>
</table>

Which rows are correct?
A 1, 2 and 3 B 1 and 4 C 2, 3 and 4 D 2 and 3 only

38 The structure of an ester is shown.

What is the name of this ester?
A ethyl propanoate B methyl propanoate C propyl ethanoate D propyl methanoate
39 Which compound has a pH of less than 7 in aqueous solution?
40 The diagram shows the repeat unit of a polymer.

![Repeat unit of a polymer](image)

Which row correctly identifies the monomer and type of polymerisation involved in making this polymer?

<table>
<thead>
<tr>
<th></th>
<th>monomer</th>
<th>type of polymerisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>addition</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>condensation</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>addition</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>condensation</td>
</tr>
</tbody>
</table>
The Periodic Table of Elements

<table>
<thead>
<tr>
<th>Group</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Li</td>
<td>11 Na</td>
<td>19 K</td>
<td>27 Al</td>
<td>35 S</td>
<td>43 K</td>
<td>51 Rb</td>
<td>69 Fr</td>
<td>87 Fr</td>
</tr>
<tr>
<td>4 Be</td>
<td>12 Mg</td>
<td>20 Ca</td>
<td>28 Si</td>
<td>36 Ar</td>
<td>46 Kr</td>
<td>64 Tl</td>
<td>86 Fr</td>
<td>114 Fr</td>
</tr>
<tr>
<td>5 B</td>
<td>13 Al</td>
<td>21 Sc</td>
<td>29 Ti</td>
<td>37 Ar</td>
<td>55 Cr</td>
<td>71 La</td>
<td>92 Ac</td>
<td>–</td>
</tr>
<tr>
<td>6 C</td>
<td>14 Si</td>
<td>22 Ti</td>
<td>30 Cr</td>
<td>44 Sr</td>
<td>60 Cu</td>
<td>74 Hf</td>
<td>94 Th</td>
<td>–</td>
</tr>
<tr>
<td>7 N</td>
<td>15 P</td>
<td>23 V</td>
<td>31 V</td>
<td>45 Ca</td>
<td>62 Zn</td>
<td>76 Os</td>
<td>96 Th</td>
<td>–</td>
</tr>
<tr>
<td>8 O</td>
<td>16 S</td>
<td>24 Cr</td>
<td>32 Ni</td>
<td>46 Sr</td>
<td>63 Sn</td>
<td>78 Pt</td>
<td>98 Th</td>
<td>–</td>
</tr>
<tr>
<td>9 F</td>
<td>17 Cl</td>
<td>25 Mn</td>
<td>33 Co</td>
<td>50 Sn</td>
<td>64 Te</td>
<td>80 Pt</td>
<td>100 Th</td>
<td>–</td>
</tr>
<tr>
<td>10 Ne</td>
<td>18 Ar</td>
<td>26 Fe</td>
<td>34 Ni</td>
<td>54 Br</td>
<td>68 Pb</td>
<td>82 U</td>
<td>102 Th</td>
<td>–</td>
</tr>
</tbody>
</table>

Key
- **atomic number**
- **atomic symbol**
- **name**
- **relative atomic mass**

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).