READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.

Answer all questions.
Electronic calculators may be used.
A copy of the Periodic Table is printed on page 16.
You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The names of eight gases are given.

- ammonia
- argon
- carbon dioxide
- helium
- hydrogen
- methane
- neon
- sulfur dioxide

(a) Answer the following questions about these gases. Each gas may be used once, more than once or not at all. State which gas:

(i) turns damp red litmus paper blue
(ii) contributes to the formation of acid rain
(iii) is a hydrocarbon which contributes to climate change
(iv) is a product of the reaction of copper(II) carbonate with hydrochloric acid
(v) is a monatomic gas which has atoms with the electronic structure 2,8,8.

(b) (i) Explain why helium and **not** hydrogen is used to fill party balloons.
(ii) Give one use of argon.

(c) Carbon dioxide is a compound.

What is meant by the term *compound*?
(d) Complete the dot-and-cross diagram to show the electron arrangement in a molecule of ammonia. Show outer shell electrons only.
2 The table shows the percentage by volume of each of the gases present in the exhaust gases from a petrol engine.

<table>
<thead>
<tr>
<th>name</th>
<th>percentage by volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>carbon monoxide</td>
<td>1.0</td>
</tr>
<tr>
<td>carbon dioxide</td>
<td></td>
</tr>
<tr>
<td>hydrogen</td>
<td>0.2</td>
</tr>
<tr>
<td>nitrogen</td>
<td>77.0</td>
</tr>
<tr>
<td>nitrogen dioxide</td>
<td>0.3</td>
</tr>
<tr>
<td>oxygen</td>
<td>0.7</td>
</tr>
<tr>
<td>hydrocarbons</td>
<td>0.3</td>
</tr>
<tr>
<td>water vapour</td>
<td>5.0</td>
</tr>
<tr>
<td>total</td>
<td>100.0</td>
</tr>
</tbody>
</table>

(a) (i) Calculate the percentage by volume of carbon dioxide in the exhaust gases.

...% [1]

(ii) Which gas shown in the table is present in the lowest percentage by volume?

... [1]

(iii) Which two elements in the table combine to form nitrogen dioxide?

... and .. [1]

(iv) Give the formula for nitrogen dioxide.

... [1]

(v) Where does the nitrogen in the exhaust gases come from?

... [1]

(b) The carbon monoxide in the exhaust gases comes from the incomplete combustion of hydrocarbons.

(i) What is meant by the term *hydrocarbon*?

..

.. [2]

(ii) Give one adverse effect of carbon monoxide on health.

... [1]
(iii) Balance the chemical equation for the complete combustion of pentane.

\[C_5H_{12} + 8O_2 \rightarrow \text{...CO}_2 + \text{...H}_2\text{O} \]

[2]

[Total: 10]
Limonene is a volatile liquid which smells of oranges.

(a) A teacher placed a beaker of limonene at the front of a classroom. At first, the students at the back of the classroom could not smell the limonene. After two minutes, the smell of limonene had spread throughout the classroom. The air in the classroom was still and calm.

(i) Explain these observations using the kinetic particle model.
..
..
..
..
.. [3]

(ii) The melting point of limonene is $-74^\circ C$. The boiling point of limonene is $176^\circ C$.

What is the physical state of limonene at $-80^\circ C$? Explain your answer.
..
.. [2]

(b) An enzyme present in peppermint plants is a catalyst for the oxidation of limonene.

State what is meant by the terms:

(i) catalyst
..
.. [1]

(ii) oxidation
..
.. [1]
(c) Limonene can be made from a colourless compound called α-terpineol. The structure of α-terpineol is shown.

![Structure of α-terpineol](image)

(i) What feature of the structure of the α-terpineol molecule shows that it is an unsaturated compound?

... [1]

(ii) Describe how the colour of aqueous bromine changes when an excess of α-terpineol is added to it.

from .. to .. [2]

[Total: 10]
4 This question is about iron and its compounds.

(a) The table shows how easy it is to reduce four metal oxides by heating with carbon.

<table>
<thead>
<tr>
<th>metal oxide</th>
<th>ease of reduction with carbon</th>
</tr>
</thead>
<tbody>
<tr>
<td>chromium(III) oxide</td>
<td>only reduced above 1700°C</td>
</tr>
<tr>
<td>iron(III) oxide</td>
<td>only reduced above 650°C</td>
</tr>
<tr>
<td>magnesium oxide</td>
<td>not reduced at 1750°C</td>
</tr>
<tr>
<td>nickel(II) oxide</td>
<td>only reduced above 300°C</td>
</tr>
</tbody>
</table>

Use this information to put the metals in order of their reactivity. Put the least reactive metal first.

least reactive most reactive

(b) Iron is a transition element. Potassium is an element in Group I of the Periodic Table.

Describe three ways in which the properties of iron differ from those of potassium.

1 ...

2 ...

3 ...

(c) Iron wire burns in oxygen.

Balance the chemical equation for this reaction.

.....Fe +O₂ → Fe₃O₄

[2]

d) Pure iron can be made by reducing iron(III) oxide, Fe₂O₃, with hydrogen.

Fe₂O₃ + 3H₂ → 2Fe + 3H₂O

How does this equation show that iron(III) oxide is reduced?

..

.. [1]
(e) When iron reacts with dilute hydrochloric acid, iron(II) chloride is formed.

(i) Describe a test for iron(II) ions.

<table>
<thead>
<tr>
<th>test</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[2]</td>
</tr>
</tbody>
</table>

(ii) Another chloride of iron has the structure shown.

\[
\begin{array}{c}
\text{Fe} \\
\text{Cl} \\
\text{Cl} \\
\text{Cl} \\
\text{Fe} \\
\text{Cl} \\
\text{Cl} \\
\text{Cl} \\
\end{array}
\]

Deduce the molecular formula of this compound showing the number of iron and chlorine atoms.

[1]

(f) Some iron nails were placed in bottles under different conditions.

In which bottles will the iron nails not rust? Give reasons for your answer.

[2]

[Total: 13]
5 (a) Complete the sentence about electrolysis using words from the list.

breakdown compound electricity electroplating
element gaseous heat molten

Electrolysis is the of an ionic when
.............................. or in aqueous solution by the passage of [4]

(b) Molten zinc iodide can be electrolysed using the apparatus shown.

On the diagram, label:
● the anode
● the cathode
● the electrolyte [2]

(c) Why are the electrodes made of graphite?
.. [1]

(d) Predict the products of the electrolysis of molten zinc iodide at:
the negative electrode ..
the positive electrode. .. [2]

(e) When chlorine is bubbled through a colourless aqueous solution of zinc iodide, the solution
turns brown.

Name the brown substance. Suggest, using ideas about reactivity of the halogens, why this
reaction occurs.
..
.. [2] [Total: 11]
6 This question is about isotopes.

(a) An atom of an isotope of fluorine is represented by the symbol shown.

\[^{19}\text{F} \]

Describe the structure of an atom of this isotope of fluorine. In your answer, include:
- the position of the protons, neutrons and electrons in the atom
- the number of protons, neutrons and electrons present in the atom.

(b) Complete the sentence about isotopes using words from the list.

atomic compound element ions molecular nucleons

Isotopes are atoms of the same which have the same
......................... number but different numbers of

(c) Give one medical use of radioactive isotopes.

.. [1]

(d) Which one of the following isotopes is used as a source of energy?

Draw a circle around the correct answer.

\[^{127}\text{I} \quad ^{235}\text{U} \quad ^{131}\text{Xe} \quad ^{66}\text{Zn} \]

[1]

[Total: 10]
This question is about Group I elements and their compounds.

(a) The properties of some Group I elements are shown in the table.

<table>
<thead>
<tr>
<th>element</th>
<th>boiling point / °C</th>
<th>atomic radius / pm</th>
<th>relative thermal conductivity</th>
<th>observations when it reacts with cold water</th>
</tr>
</thead>
<tbody>
<tr>
<td>sodium</td>
<td>883</td>
<td>186</td>
<td>3.9</td>
<td>rapid bubbling but does not burst into flame</td>
</tr>
<tr>
<td>potassium</td>
<td>759</td>
<td>227</td>
<td></td>
<td>very rapid bubbling and bursts into flame</td>
</tr>
<tr>
<td>rubidium</td>
<td>688</td>
<td></td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>caesium</td>
<td>671</td>
<td>265</td>
<td>1.0</td>
<td>explodes</td>
</tr>
</tbody>
</table>

(i) Complete the table to estimate:
- the relative thermal conductivity of potassium
- the atomic radius of rubidium.

(ii) Describe the trend in the boiling points of the Group I elements.

... [1]

(iii) Use the information in the table to predict what you would observe when rubidium reacts with cold water.

... [1]

(b) Which one of the statements about the formation of a sodium ion from a sodium atom is correct? Tick one box.

A sodium atom gains an electron. []
A sodium atom loses an electron. []
A sodium atom loses a proton. []
A sodium atom gains a proton. []
(c) Is sodium oxide an acidic oxide or a basic oxide? Give a reason for your answer.

..
.. [1]

(d) A compound of sodium has the formula C₄H₅Na.

Calculate the relative formula mass of C₄H₅Na. Show all your working. Use your Periodic Table to help you.

relative formula mass = [2]

(e) Complete the word equation for the reaction of sodium hydroxide with sulfuric acid.

\[
\text{sodium hydroxide} + \text{sulfuric acid} \rightarrow \hspace{1cm} \hspace{1cm} + \hspace{1cm} \hspace{1cm}
\]

[2]

[Total: 10]
When zinc reacts with hydrochloric acid, hydrogen gas is produced. The graph shows how the volume of hydrogen gas produced changes with time when an excess of zinc is reacted with 0.2 mol/dm³ hydrochloric acid.

(a) Explain why the volume of hydrogen gas remains constant after six minutes.
.. [1]

(b) What volume of hydrogen gas was released in the first two minutes of the reaction?
.. [1]

(c) The experiment is repeated using the same volume of 0.1 mol/dm³ hydrochloric acid. All other conditions are kept the same.

On the grid, draw the graph for the experiment using 0.1 mol/dm³ hydrochloric acid. [2]

(d) Give the name of the salt formed when zinc reacts with hydrochloric acid.
.. [1]

(e) Which one of the following pH values could be the pH of dilute hydrochloric acid? Draw a circle around the correct answer.

pH 1 pH 7 pH 9 pH 13 [1]

[Total: 6]
The Periodic Table of Elements

<table>
<thead>
<tr>
<th>Group</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td>Li</td>
<td>Be</td>
<td>B</td>
<td>C</td>
<td>N</td>
<td>O</td>
<td>F</td>
<td>Ne</td>
</tr>
<tr>
<td>Na</td>
<td>Na</td>
<td>Mg</td>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
<td>Ar</td>
</tr>
<tr>
<td>K</td>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
</tr>
<tr>
<td>Rb</td>
<td>Rb</td>
<td>Sr</td>
<td>Y</td>
<td>Zr</td>
<td>Nb</td>
<td>Mo</td>
<td>Tc</td>
<td>Ru</td>
</tr>
<tr>
<td>Cs</td>
<td>Cs</td>
<td>Ba</td>
<td>La</td>
<td>Hf</td>
<td>Ta</td>
<td>W</td>
<td>Re</td>
<td>Os</td>
</tr>
<tr>
<td>Fr</td>
<td>Fr</td>
<td>Ra</td>
<td>Act</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lanthanoids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>actinoids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).