

Cambridge Assessment International Education Cambridge Ordinary Level

CHEMISTRY

Paper 1 Multiple Choice

5070/12 May/June 2019 1 hour

Additional Materials:	Multiple Choice Answer Sheet
	Soft clean eraser
	Soft pencil (type B or HB is recommended)

READ THESE INSTRUCTIONS FIRST

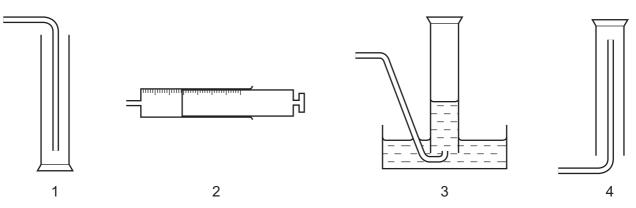
Write in soft pencil.

447364940

Do not use staples, paper clips, glue or correction fluid. Write your name, centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you. DO **NOT** WRITE IN ANY BARCODES.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.


Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet. A copy of the Periodic Table is printed on page 16. Electronic calculators may be used.

This document consists of 14 printed pages and 2 blank pages.

2

1 The diagrams show four different methods of collecting gases.

Which method is suitable for collecting a gas which has the properties described?

	method for collecting gas	properties of gas
Α	1	less dense than air and soluble in water
в	2	denser than air and soluble in water
С	3	less dense than air and soluble in water
D	4	denser than air and insoluble in water

2 After acidification with dilute nitric acid, a colourless solution of **X** reacts with aqueous silver nitrate to give a white precipitate.

What could X be?

- A calcium iodide
- **B** copper(II) chloride
- C lead(II) iodide
- D sodium chloride

3

3 The diagram represents a chromatogram of the colourless acids present in a drink. The chromatogram has been treated with a locating agent.

A table of $R_{\rm f}$ values for the possible acids is given.

	solvent front
3●	
2∙ 1∙	
	- origin

acid	R _f value
tartaric	0.14
citric	0.16
malic	0.23
lactic	0.45
succinic	0.50

Which acids are present in the drink?

- A citric acid, malic acid and lactic acid
- **B** citric acid, malic acid and succinic acid
- **C** malic acid, lactic acid and succinic acid
- D tartaric acid, citric acid and malic acid
- 4 Which gas will diffuse at the fastest rate at the same temperature and pressure?

A Ar **B** C_3H_8 **C** CO_2 **D** F_2

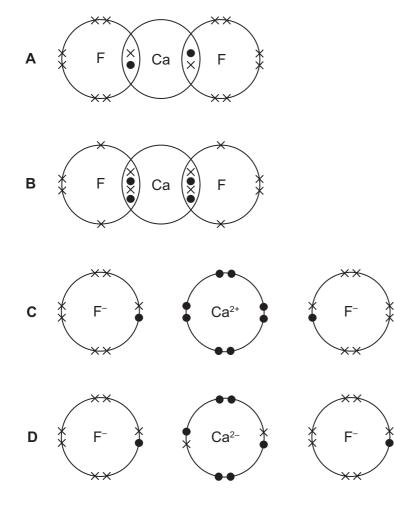
5 Two particles, K^+ and Ar, can be written as ${}^{39}_{19}K^+$ and ${}^{40}_{18}Ar$.

Which statement about these particles is correct?

- **A** Ar has more neutrons than K^+ .
- **B** K has more nucleons than Ar.
- **C** K^+ has 20 electrons.
- **D** K^+ has a greater mass than Ar.

4

key


an electron from calcium

× an electron from fluorine

6 A mineral deposit is found to contain small grains made entirely of the element carbon.

Which property will definitely be true of the grains of carbon?

- **A** They will be made of atoms arranged in layers.
- B They will be soft.
- **C** They will burn to give carbon dioxide.
- **D** They will conduct electricity.
- 7 Which diagram shows the outer electron arrangement in calcium fluoride?

8 How many shared pairs of electrons are there in one carbon dioxide molecule?

A 2 **B** 4 **C** 8 **D** 12

- **9** Two statements about metals are given.
 - 1 Metals contain a lattice of negative ions in a 'sea of electrons'.
 - 2 The electrical conductivity of metals is related to the mobility of the electrons in the structure.

Which is correct?

- **A** Both statements are correct and statement 1 explains statement 2.
- **B** Both statements are correct but statement 1 does not explain statement 2.
- **C** Statement 1 is correct and statement 2 is incorrect.
- **D** Statement 2 is correct and statement 1 is incorrect.
- **10** Powdered calcium carbonate reacts with dilute hydrochloric acid to produce calcium chloride, water and carbon dioxide.

What is the correct ionic equation, including state symbols, for this reaction?

$$\mathbf{A} \quad \mathsf{CaCO}_3(\mathsf{s}) + 2\mathsf{HC}l(\mathsf{aq}) \rightarrow \mathsf{CaC}l_2(\mathsf{aq}) + \mathsf{H}_2\mathsf{O}(\mathsf{I}) + \mathsf{CO}_2(\mathsf{g})$$

B
$$Ca^{2+}(aq) + CO_3^{2-}(aq) + 2H^{+}(aq) \rightarrow Ca^{2+}(aq) + H_2O(I) + CO_2(g)$$

- **C** $\text{CO}_3^{2-}(\text{aq}) + 2\text{H}^+(\text{aq}) \rightarrow \text{H}_2\text{O}(\text{I}) + \text{CO}_2(\text{g})$
- **D** CaCO₃(s) + 2H⁺(aq) \rightarrow Ca²⁺(aq) + H₂O(I) + CO₂(g)
- 11 Which mass of carbon contains the same number of atoms as 16.0 g of sulfur?

A 0.5g **B** 6.0g **C** 8.0g **D** 12.0g

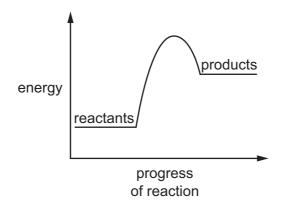
12 $3.0 \,\text{dm}^3$ of sulfur dioxide is reacted with $2.0 \,\text{dm}^3$ of oxygen.

 $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$

Assuming the reaction goes to completion and that all gases are at room temperature and pressure, which volume of sulfur trioxide is formed?

- **A** $2.0 \,\mathrm{dm^3}$ **B** $3.0 \,\mathrm{dm^3}$ **C** $4.0 \,\mathrm{dm^3}$ **D** $5.0 \,\mathrm{dm^3}$
- **13** A sample of magnesium hydroxide, Mg(OH)₂, is made by adding an excess of aqueous sodium hydroxide to an aqueous solution containing 1.20 g magnesium sulfate, MgSO₄.

The mass of magnesium hydroxide formed is 0.26 g.


What is the percentage yield of magnesium hydroxide?

A 10.5% **B** 21.7% **C** 44.8% **D** 61.9%

14 When concentrated aqueous sodium chloride is electrolysed using inert electrodes, which product is formed at the cathode and which product is formed at the anode?

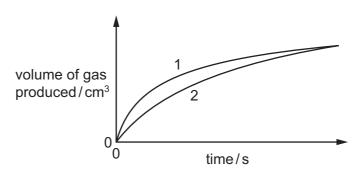
	cathode product	anode product
Α	hydrogen	chlorine
в	hydrogen	oxygen
С	sodium	chlorine
D	sodium	oxygen

- 15 Which negative ions are present in aqueous copper(II) sulfate?
 - A copper(II) ions and hydrogen ions
 - B copper(II) ions only
 - **C** sulfate ions and hydroxide ions
 - D sulfate ions only
- **16** The diagram shows the energy profile of a chemical reaction.

Which row is correct?

	the reaction that is endothermic	the reaction with greater activation energy
Α	backward reaction	backward reaction
в	backward reaction	forward reaction
С	forward reaction	backward reaction
D	forward reaction	forward reaction

7


17 The table shows the energy released by the complete combustion of some compounds.

compound	formula	M _r	ΔH in kJ/mol
benzene	C_6H_6	78	-3270
heptane	C_7H_{16}	100	-4800
octane	C_8H_{18}	114	-5510
propane	C_3H_8	44	-2200

Which compound releases the least energy when 1 g is completely burned?

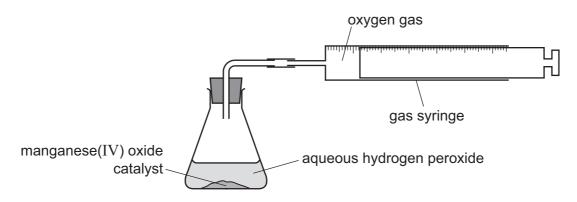
- A benzene
- B heptane
- **C** octane
- **D** propane
- **18** An experiment is carried out to measure the rate of reaction between magnesium and dilute hydrochloric acid under two different conditions. The mass of magnesium and the number of moles of hydrochloric acid are the same in both experiments.

Graphs of the results are shown.

Which statements could explain the difference between graph 1 and graph 2?

- 1 Graph 1 results are obtained at a higher temperature.
- 2 Graph 1 results are obtained by using hydrochloric acid that is more concentrated.
- 3 Graph 1 results are obtained using smaller pieces of magnesium.

A 1, 2 and 3 **B** 1 and 2 only **C** 1 and 3 only **D** 2 and 3 only


8

19 Hydrogen peroxide decomposes slowly at room temperature.

 $2H_2O_2(aq) \rightarrow 2H_2O(I) + O_2(g)$

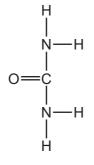
The reaction can be catalysed by adding manganese(IV) oxide.

The diagram shows the apparatus that can be used to monitor the rate of this reaction.

Which statement is correct when a catalyst is added to the aqueous hydrogen peroxide?

- **A** The catalyst increases the activation energy for the reaction.
- **B** The catalyst is used up during the reaction.
- **C** The gas syringe fills up more quickly when the catalyst is added.
- **D** The total amount of oxygen produced increases when the catalyst is added.
- 20 Reduction can be defined in terms of the gain or loss of oxygen or of hydrogen or of electrons.

Which row correctly describes all three definitions of reduction?


	oxygen	hydrogen	electrons
Α	gain	loss	loss
В	gain	loss	gain
С	loss	loss	loss
D	loss	gain	gain

- 21 Why is ethanoic acid described as a weak acid?
 - A It is an organic acid.
 - **B** It is a poor conductor of electricity.
 - **C** It is only slightly dissociated in water.
 - **D** It reacts only with very reactive metals.

9

22 What is the best method to prepare a sample of silver chloride?

- **A** Add silver nitrate to chlorine.
- **B** Add silver to hydrochloric acid.
- **C** Burn silver in chlorine.
- **D** Mix aqueous solutions of silver nitrate and sodium chloride.
- **23** The nitrogenous fertiliser urea has the structure shown.

Which percentage, by mass, of nitrogen does it contain?

Α	23.3	В	25.0	С	43.8	D	46.7
		_		-		_	

24 Ammonia is manufactured by the Haber process.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) \qquad \Delta H = -92 \text{ kJ/mol}$$

For this reaction, which rows give a true statement together with a correct reason?

	statement	reason
1	Nitrogen and hydrogen are mixed in the ratio 1:3 by volume.	The formula of ammonia is NH_3 .
2	The pressure used is approximately 200 atmospheres.	A high pressure is needed to produce a good yield of ammonia at equilibrium.
3	The temperature used is approximately 450 °C.	A high temperature is needed to produce a good yield of ammonia at equilibrium.
4	Vanadium(V) oxide is used as a catalyst.	A catalyst speeds up the rate of the reaction.

A 1 and 2 only B 2 and 3 only C 3 and 4 only D 1, 2 and 3 only

10

- 25 Which uses for sulfuric acid are correct?
 - 1 as a bleach in the manufacture of wood pulp for paper
 - 2 as a food preservative in tinned foods
 - 3 as a raw material in the manufacture of detergents
 - 4 as a fertiliser
 - **A** 1 and 3 **B** 2 and 4 **C** 2 only **D** 3 only
- 26 The atomic number of element X is 12.

What is the formula of the chloride of X?

- **A** X_2Cl **B** XCl **C** XCl_2 **D** XCl_4
- 27 Which property is common to ⁴⁰Ca, ³⁹K and ²³Na?
 - **A** Their atoms all have more neutrons than protons.
 - **B** Their ions all have eight electrons in their outer shell.
 - **C** They all sink when added to water.
 - **D** They are all deposited at the positive electrode when their molten chloride is electrolysed.
- 28 Which statement about transition elements is correct?
 - **A** Their soluble salts usually form coloured aqueous solutions.
 - **B** They are all in the same group of the Periodic Table.
 - **C** They are non-metals with high melting points.
 - **D** They can be mixed together to form compounds.
- **29** Three different elements react by losing electrons. The ions formed all have the electronic configuration 2,8.

Which statement about these elements is correct?

- **A** They are in the same group.
- **B** They are in the same period.
- **C** They are noble gases.
- **D** They are transition elements.

11

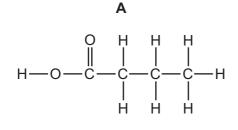
30 Metal M is displaced from aqueous M nitrate by copper.

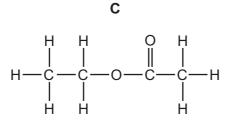
Which statement about metal M and its compounds is correct?

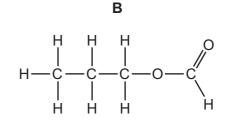
- **A** M carbonate is stable when heated.
- **B** M oxide is reduced to M by heating with carbon.
- **C** M reacts with dilute hydrochloric acid to give hydrogen.
- **D** M reduces zinc oxide to zinc on heating.
- 31 Which statement about some of the gases present in air is correct?
 - **A** Dry air contains about 78% of oxygen.
 - **B** Methane is produced by the incomplete combustion of fossil fuels.
 - **C** Sulfur dioxide is released by volcanoes.
 - **D** The noble gases make up about 5% of dry air.
- 32 Which treatment process is used to disinfect water?
 - A adding carbon
 - **B** chlorination
 - **C** desalination
 - **D** filtration
- **33** A molecule of compound Q has three C–C single bonds and ten C–H bonds only. It has no other bonds.

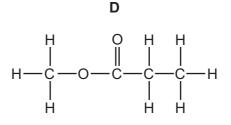
Which statement about compound Q is correct?

- **A** It can be polymerised.
- **B** It decolourises bromine water.
- **C** It has three isomers.
- **D** It reacts with chlorine by substitution.
- **34** Which organic compound requires the least number of moles of oxygen for the complete combustion of one mole of the compound?
 - **A** C_3H_7OH **B** C_3H_7COOH **C** C_3H_8 **D** C_4H_8

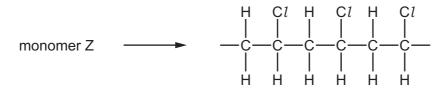

- 35 Which reaction is an addition reaction?
 - A making ethane and ethene from butane
 - **B** making ethene and hydrogen from butane
 - C the manufacture of margarine from a vegetable oil
 - D the reaction between ethene and oxygen, giving carbon dioxide and water
- **36** Two equations involving ethanol are shown.
 - 1 ethanol + oxygen _____ carboxylic acid
 - 2 glucose ______ ethanol + carbon dioxide

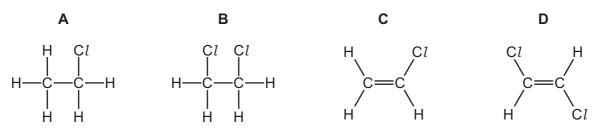

Which row is correct?


	molecular formula of carboxylic acid in 1	a catalyst is needed
Α	CH₃CO₂H	1 only
в	$C_2H_5CO_2H$	1 only
С	CH₃CO₂H	2 only
D	$C_2H_5CO_2H$	2 only


37 What is the empirical formula of ethanoic acid?

38 Which structure represents propyl methanoate?




13

39 Monomer Z is used to make poly(chloroethene).

partial structure of poly(chloroethene)

What is monomer Z?

40 *Terylene*, a man-made fibre, is used to make clothing.

Which row correctly describes how Terylene is manufactured?

	starting materials	type of polymerisation
Α	an acid and an alcohol	addition
в	an acid and an alcohol	condensation
С	an alkene	addition
D	an alkene	condensation

14

BLANK PAGE

15

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

16

I = I = I = I = I = I = I = I = I = I							The Pe	riodic Tal	The Periodic Table of Elements	ements							
Kinch 1 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>22</th> <th>dno</th> <th></th> <th></th> <th>=</th> <th>2</th> <th>></th> <th></th> <th></th> <th></th>								22	dno			=	2	>			
KGV H atomic unitation and manual manu							-										2
Koy Notation							T										He
atomic unitarie atomic unitarie metane unitarie atomic unitarie atomic unitarie metane unitarie atomic unitarie atomic unitarie metane unitarie atomic unitarie atomic unitarie atomic unitarie atomic unitarie atomic unitarie atomic unitari atomic unitarie atomic unitarie atomic unitarie ato				Key			hydrogen 1										helium 4
atomic symbol matrix relations atomic symbol matrix atomic symbol matrix <th< th=""><th></th><th></th><th></th><th>atomic number</th><th></th><th>J</th><th></th><th></th><th></th><th></th><th></th><th>5</th><th>9</th><th>7</th><th>8</th><th>0</th><th>10</th></th<>				atomic number		J						5	9	7	8	0	10
Tig Tig <td></td> <td></td> <td>ato</td> <td>mic sym</td> <td>loc</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>В</td> <td>U</td> <td>z</td> <td>0</td> <td>ш</td> <td>Ne</td>			ato	mic sym	loc							В	U	z	0	ш	Ne
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			rela	name ative atomic me	SS							boron 11	carbon 12	nitrogen 14	oxygen 16	fluorine 19	neon 20
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												13	14	15	16	17	18
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												Ρl	Si	۵.	ა	Cl	Ar
												aluminium 27	silicon 28	phosphorus 31	sulfur 32	chlorine 35.5	argon 40
	-	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
		Sc	F	>	ŗ	Mn	Fе	ပိ	ïZ	Cu	Zn	Ga	Ge	As	Se	Ŗ	Кr
		scandium 45	titanium 48	vanadium 51	chromium 52	manganese 55	iron 56	cobalt 59	nickel 59	copper 64	zinc 65	gallium 70	germanium 73	arsenic 75	selenium 79	bromine 80	krypton 84
ZrNbMoTcRuRhPdAgCdInSnSbTezircoriumnobumnobummoydenumternetunuthentunnotumnot	-	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
ZirolumRolumRolumRuneuluRunuRuneuluRuneuluRuneuluRuneuluRuneuluRuneuluRuneuluRuneuluRuneuluRuneuluRuneuluRuneuluRuneuluRuneuluRuneuluRuneuluRuneuluRunuRunuRunuRunuRunuRunuRunuRunuRunuRunuRunuRunuRunuRunuRunuRunuRunuRunu <td></td> <td>≻</td> <td>Zr</td> <td>qN</td> <td>Mo</td> <td>Ц</td> <td>Ru</td> <td>Rh</td> <td>Pd</td> <td>Ag</td> <td>Cd</td> <td>In</td> <td>Sn</td> <td>Sb</td> <td>Те</td> <td>Ι</td> <td>Xe</td>		≻	Zr	qN	Mo	Ц	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		yttrium 89	zirconium 91	niobium 93	molybdenum 96	technetium -	ruthenium 101	rhodium 103	palladium 106	silver 108	cadmium 112	indium 115	tin 119	antimony 122	tellurium 128	iodine 127	xenon 131
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
		lanthanoids	Ħ	Та	≥	Re	Os	Ir	Ę	Au	Hg	11	Pb	Ē	Ро	At	Rn
			hafnium 178	tantalum 181	tungsten 184	rhenium 186	osmium 190	iridium 192	platinum 195	gold 197	mercury 201	thallium 204	lead 207	bismuth 209	polonium –	astatine -	radon -
RfDbSgBhHsMtDsRgCnF1Lv- in therefordiumutherfordiumubniumseabogiumbohrumhassiummatheriumicentionicentionicentionicention- in therefordiumubniumseabogiumbohrumhassiummatheriumicentionicentionicentionicentionicentionicention- in therefordiumseabogiumbohrumhassiummatheriumicentionicentionicentionicentionicentionicention- in the interventseabogiumpointgedTbCbTbCbThVbicention- in the interventreasedyniumneodyniumseanatiumseanatiumseanatiumicentionicentionicentionicention- in the interventreasedyniumneodyniumpointgedTbDyHoFrLv- in the interventreasedyniumneodyniumseanatiumseanatiumgedfrfrfricention- in the interventreasedyniumneodyniumgedfrTbDyHoFrTmVb- in the interventreasedyniumneodyniumgedfrfrfrfrfricention- in the interventreasedyniumneodyniumgedfrTbDyHoFrTmVb- in the interventreasedyniumneodyniumgedfrfrfr		89-103	104	105	106	107	108	109	110	111	112		114		116		
utherfordium databolium seabogium bortrum hassiun meitrerium darmstadtum comparitium leerovium leerovium<		actinoids	Ł	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cu		Fl		۲۷		
58596061626364656667686970CePrNdPmSmEuGdTbDyHoErTmYb140141-1501521571591631671671691732322312322312381001011021231238233949596979899100101102123123810012312381001011021231232231236231236969798991001011021021011021232231236101102133123423523123623696979899100101102102103103103103103103103103103102102103102102103103102103103103103103103 <t< td=""><td></td><td></td><td>rutherfordium -</td><td>dubnium –</td><td>seaborgium -</td><td>bohrium –</td><td>hassium _</td><td>meitnerium -</td><td>darmstadtium -</td><td>roentgenium -</td><td>copernicium -</td><td></td><td>flerovium -</td><td></td><td>livermorium –</td><td></td><td></td></t<>			rutherfordium -	dubnium –	seaborgium -	bohrium –	hassium _	meitnerium -	darmstadtium -	roentgenium -	copernicium -		flerovium -		livermorium –		
58 59 60 61 62 63 65 66 67 68 69 70 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb 140 141 144 - 150 157 159 163 167 169 173 90 91 92 93 94 95 96 97 98 99 100 101 102 140 Pa U Np Pu Am Cm BK Cf ES Fm Md No 232 231 238 - 100 101 102 173 173 232 231 238	{																
CePrNdPmSmEuGdTbDyHoFrTmYbcelumpraseodynumpromethumsamatumeuropiumgadolinumtertiumdysprosiumhomiumyterbiumyterbium140141144-15015215715916516716917390919293949596979899100101102150150150150157159165167169173150919293949596979899100101150123231238232231238232231238 <td></td> <td>57</td> <td>58</td> <td>59</td> <td>60</td> <td>61</td> <td>62</td> <td>63</td> <td>64</td> <td></td> <td>66</td> <td>67</td> <td>68</td> <td>69</td> <td>70</td> <td>71</td> <td></td>		57	58	59	60	61	62	63	64		66	67	68	69	70	71	
certurnpraseodymiumprodymiumpromethumsamarumeuropiumgadoliniumterbiumdysprosiumholmiumterbiumtuluiumtuluium140141-150152157159163167169173909192939495959697989910010110215015115015715915916516716917315115215715998979899100101102151153156157159159167169173152153001010101102153231238232231238		La		P	Nd	Pm	Sm	Eu	Gd		D	Ю	Ъ	Tm	Υb	Lu	
90 91 92 93 94 95 96 97 98 99 100 101 102 Th Pa U Np Pu Am Cm BK Cf Es Fm Md No 232 231 238 -		lanthanum 139		praseodymium 141	neodymium 144	promethium _	samarium 150	europium 152	gadolinium 157		dysprosium 163	holmium 165	erbium 167	thulium 169	ytterbium 173	lutetium 175	
Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No tronium protactinium urganium nepturium americum curium berkelum californium ensisteinum merdelevium nooelium 232 231 238 - - - - - - - -		89	06	91	92	93	94	95	96		86	66	100	101	102	103	
thorium protactinium uranium neptunium pultonium americium curium berkelium californium einsteinium fermium mendelevium nobelium 232 231 238		Ac	Th	Ра		dN	Pu	Am	Cm	¥	ç	Es	ЕШ	Md	No	Ļ	
		actinium –	thorium 232	protactinium 231	uranium 238	neptunium -	plutonium –	americium -	curium –	berkelium –	califomium –	einsteinium –	fermium -	mendelevium -	nobelium –	lawrencium -	

5070/12/M/J/19