Cambridge Assessment International Education
Cambridge International General Certificate of Secondary Education

CHEMISTRY 0620/23
Paper 2 Multiple Choice (Extended)
October/November 2019

45 minutes

Additional Materials: Multiple Choice Answer Sheet
Soft clean eraser
Soft pencil (type B or HB is recommended)

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.
Do not use staples, paper clips, glue or correction fluid.
Write your name, centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.
DO NOT WRITE IN ANY BARCODES.

There are forty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D.
Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.
Any rough working should be done in this booklet.
A copy of the Periodic Table is printed on page 16.
Electronic calculators may be used.
1. Which two gases will diffuse at the same rate, at the same temperature?
 A. carbon monoxide and carbon dioxide
 B. carbon monoxide and nitrogen
 C. chlorine and fluorine
 D. nitrogen and oxygen

2. A student is asked to measure the time taken for 0.4 g of magnesium carbonate to react completely with 25.0 cm³ of dilute hydrochloric acid. Which pieces of apparatus does the student need?
 A. balance, stop-clock, pipette
 B. balance, stop-clock, thermometer
 C. balance, pipette, thermometer
 D. stop-clock, pipette, thermometer

3. A substance is separated using chromatography. The chromatogram is shown.

Which statement is not correct?
 A. P has a higher Rₙ value than Q.
 B. P, Q and R are all soluble in the solvent.
 C. R is the most soluble substance.
 D. The Rₙ value of P is less than 1.

4. Which statement about an ionic compound is not correct?
 A. It conducts electricity when dissolved in water.
 B. It has a high melting point due to strong attractive forces between ions.
 C. It has a regular lattice of oppositely charged ions in a ‘sea of electrons’.
 D. The ionic bonds are formed between metallic and non-metallic elements.
The numbers of protons, neutrons and electrons present in the atoms P, Q, R and S are shown.

<table>
<thead>
<tr>
<th>atom</th>
<th>number of protons</th>
<th>number of neutrons</th>
<th>number of electrons</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Q</td>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>R</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>S</td>
<td>6</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

Which atoms are isotopes of the same element?
A P and Q only B Q and R only C R and S only D P and S only

Carbon has three isotopes, 12C, 13C and 14C.

Why do all three isotopes have the same chemical properties?
A They all have the same atomic mass.
B They all have the same number of electrons in their outer shell.
C They all have the same number of electron shells.
D They all have the same number of nucleons.

Silicon(IV) oxide is a covalently bonded compound.

Which statements are correct?
1 Silicon atoms form four single bonds in silicon(IV) oxide.
2 Oxygen atoms form two double bonds in silicon(IV) oxide.
3 Silicon(IV) oxide has a high melting point.
4 Silicon(IV) oxide contains one silicon atom and four oxygen atoms.
A 1 and 2 only B 1 and 3 only C 2 and 3 only D 3 and 4 only

Which statement describes the structure of copper?
A It has a lattice of negative ions in a ‘sea of electrons’.
B It has a lattice of negative ions in a ‘sea of protons’.
C It has a lattice of positive ions in a ‘sea of electrons’.
D It has a lattice of positive ions in a ‘sea of protons’.
9 Magnesium carbonate decomposes on heating to form magnesium oxide and carbon dioxide as shown.

\[
\text{MgCO}_3 \rightarrow \text{MgO} + \text{CO}_2
\]

How much magnesium carbonate is needed to make 5.0 g of magnesium oxide?
A 3.5 g B 4.0 g C 6.5 g D 10.5 g

10 90 g of glucose is dissolved in water.

The glucose solution is fermented.

\[
\text{C}_{6}\text{H}_{12}\text{O}_6 \rightarrow 2\text{CO}_2 + 2\text{C}_2\text{H}_5\text{OH}
\]

Glucose, \(M_r = 180 \) Ethanol, \(M_r = 46 \)

After the fermentation finishes, 6.8 g of ethanol is obtained from the solution.

What is the percentage yield of ethanol?
A 7.4 B 7.6 C 14.8 D 29.6

11 The diagram shows a simple cell.

Which metal P produces the smallest voltage?
A calcium B iron C magnesium D zinc
12 What are the ionic half-equations for the electrode reactions during the electrolysis of concentrated aqueous sodium chloride?

<table>
<thead>
<tr>
<th></th>
<th>anode</th>
<th>cathode</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(Cl_2 + 2e^- \rightarrow 2Cl^-)</td>
<td>(H_2 \rightarrow 2H^+ + 2e^-)</td>
</tr>
<tr>
<td>B</td>
<td>(2Cl^- \rightarrow Cl_2 + 2e^-)</td>
<td>(2H^+ + 2e^- \rightarrow H_2)</td>
</tr>
<tr>
<td>C</td>
<td>(H_2 \rightarrow 2H^+ + 2e^-)</td>
<td>(Cl_2 + 2e^- \rightarrow 2Cl^-)</td>
</tr>
<tr>
<td>D</td>
<td>(2H^+ + 2e^- \rightarrow H_2)</td>
<td>(2Cl^- \rightarrow Cl_2 + 2e^-)</td>
</tr>
</tbody>
</table>

13 An energy level diagram for a reaction is shown.

Which statement and explanation about this reaction are correct?

<table>
<thead>
<tr>
<th></th>
<th>statement</th>
<th>explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>the reaction is endothermic</td>
<td>the products have more energy than the reactants</td>
</tr>
<tr>
<td>B</td>
<td>the reaction is endothermic</td>
<td>the products have less energy than the reactants</td>
</tr>
<tr>
<td>C</td>
<td>the reaction is exothermic</td>
<td>the products have more energy than the reactants</td>
</tr>
<tr>
<td>D</td>
<td>the reaction is exothermic</td>
<td>the products have less energy than the reactants</td>
</tr>
</tbody>
</table>

14 Which gases are used to generate electricity in a fuel cell?

A carbon dioxide and oxygen
B hydrogen and methane
C hydrogen and oxygen
D methane and carbon dioxide
15 A sequence of changes involving sulfur is shown.

\[
\text{S(s)} \xrightarrow{\text{change 1}} \text{S(l)} \xrightarrow{\text{change 2}} \text{SO}_2(\text{g})
\]

Which row describes the changes?

<table>
<thead>
<tr>
<th>change 1</th>
<th>change 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A chemical</td>
<td>chemical</td>
</tr>
<tr>
<td>B chemical</td>
<td>physical</td>
</tr>
<tr>
<td>C physical</td>
<td>chemical</td>
</tr>
<tr>
<td>D physical</td>
<td>physical</td>
</tr>
</tbody>
</table>

16 Magnesium reacts with dilute hydrochloric acid.

Which statement about the particles in the reaction is correct?

A Increasing the concentration of dilute hydrochloric acid increases the collision rate but has no effect on the activation energy.

B Increasing the concentration of dilute hydrochloric acid increases the collision rate and the activation energy.

C Increasing the temperature of the reaction increases the activation energy.

D Increasing the temperature of the reaction causes all collisions to lead to a reaction.

17 Two molecules of nitrogen dioxide combine in a reversible reaction to form dinitrogen tetroxide.

The forward reaction is exothermic.

\[
2\text{NO}_2(\text{g}) \rightleftharpoons \text{N}_2\text{O}_4(\text{g})
\]

Which changes in reaction conditions would both increase the amount of dinitrogen tetroxide at equilibrium?

A decreasing the temperature and decreasing the pressure

B decreasing the temperature and increasing the pressure

C increasing the temperature and decreasing the pressure

D increasing the temperature and increasing the pressure
18 Chlorine displaces bromine from aqueous potassium bromide.

The ionic equation for the reaction is shown.

\[\text{Cl}_2 + 2\text{Br}^- \rightarrow 2\text{Cl}^- + \text{Br}_2 \]

Which statement about this reaction is correct?

A Bromide ions act as an oxidising agent.
B Bromide ions are oxidised when electrons are lost.
C Chlorine acts as a reducing agent.
D Chlorine is reduced when electrons are lost.

19 Which substance is a neutral oxide?

A aluminium oxide
B carbon monoxide
C sulfur dioxide
D zinc oxide

20 Which statements about dilute sulfuric acid are correct?

1 It turns red litmus paper blue.
2 It reacts with magnesium(II) oxide to form magnesium(II) sulfate and water.
3 It reacts with magnesium to form magnesium(II) sulfate and carbon dioxide.
4 Its pH is below pH 7.

A 1 and 2 only B 1 and 3 only C 2 and 4 only D 3 and 4 only
21 A method used to make copper(II) sulfate crystals is shown.

1 Place dilute sulfuric acid in a beaker.
2 Warm the acid.
3 Add copper(II) oxide until it is in excess.
4 Filter the mixture.
5 Evaporate the filtrate until crystals start to form.
6 Leave the filtrate to cool.

What are the purposes of step 3 and step 4?

<table>
<thead>
<tr>
<th></th>
<th>step 3</th>
<th>step 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>to ensure all of the acid has reacted</td>
<td>to obtain solid copper(II) sulfate</td>
</tr>
<tr>
<td>B</td>
<td>to ensure all of the acid has reacted</td>
<td>to remove the excess of copper(II) oxide</td>
</tr>
<tr>
<td>C</td>
<td>to speed up the reaction</td>
<td>to obtain solid copper(II) sulfate</td>
</tr>
<tr>
<td>D</td>
<td>to speed up the reaction</td>
<td>to remove the excess of copper(II) oxide</td>
</tr>
</tbody>
</table>

22 Lead(II) iodide is formed as a precipitate in the reaction shown.

\[
Pb(NO_3)_2(aq) + 2NaI(aq) \rightarrow PbI_2(s) + 2NaNO_3(aq)
\]

Which method is used to separate the lead(II) iodide from the mixture?

A crystallisation
B distillation
C evaporation
D filtration

23 Which statement describes a gas which is in Group VIII of the Periodic Table?

A A colourless gas that helps substances burn.
B A pollutant gas present in car exhausts.
C A gas that is less dense than air and makes a ‘pop’ sound with a lighted splint.
D A gas that is used in lamps.
24 Which pair of elements reacts together most violently?
A chlorine and lithium
B chlorine and potassium
C iodine and lithium
D iodine and potassium

25 Iron reacts with dilute hydrochloric acid to form iron(II) chloride, FeCl₂. Iron reacts with chlorine to form iron(III) chloride, FeCl₃.

Which property of transition elements is shown by this information?
A Transition elements have high melting points.
B Transition elements can act as catalysts.
C Transition elements have variable oxidation states.
D Transition elements have coloured compounds.

26 Some properties of substance X are listed.
- It conducts electricity when molten.
- It has a high melting point.
- It burns in oxygen and the oxide dissolves in water to give a solution with pH 11.

What is X?
A a covalent compound
B a macromolecule
C a metal
D an ionic compound

27 Which statement about metals and their uses is correct?
A Aluminium is used in the manufacture of aircraft because it has a high density.
B Copper is used to make cooking utensils because it is a poor conductor of heat.
C Mild steel is used to make car bodies because it is brittle and breaks easily.
D Stainless steel is used to make cutlery because it is resistant to corrosion.
28 Which word equation represents a reaction which occurs?

A sodium oxide + carbon → sodium + carbon dioxide
B sodium oxide + iron → sodium + iron(II) oxide
C iron(II) oxide + copper → iron + copper(II) oxide
D iron(III) oxide + carbon → iron + carbon dioxide

29 Why is cryolite used in the extraction of aluminium by electrolysis?

A It changes bauxite to aluminium oxide.
B It decreases the melting point of the aluminium.
C It dissolves the aluminium oxide.
D It protects the anodes from corrosion.

30 River water contains soluble impurities, insoluble impurities and bacteria.

River water is made safe to drink by filtration and chlorination.

Which statement is correct?

A Filtration removes bacteria and insoluble impurities, and chlorination removes soluble impurities.
B Filtration removes insoluble impurities, and chlorination kills the bacteria.
C Filtration removes soluble and insoluble impurities, and chlorination kills the bacteria.
D Filtration removes soluble impurities and bacteria, and chlorination removes insoluble impurities.

31 How are oxygen and nitrogen separated from air?

A chromatography
B condensation and filtration
C crystallisation
D fractional distillation
32. The apparatus shown is set up and left for a week.

Which diagram shows the level of the water at the end of the week?

A B C D

33. The following processes are part of the carbon cycle.

1. photosynthesis
2. combustion
3. respiration

Which processes decrease the amount of carbon dioxide in the atmosphere?

A 1 only B 1 and 2 only C 1 and 3 only D 2 and 3 only
34 Ammonium sulfate is used as a fertiliser.

It is made from ammonia and sulfuric acid.

Which words complete gaps 1, 2 and 3?

The1...... is made by the2...... process in which3...... is used as a catalyst.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ammonia</td>
<td>Contact</td>
<td>iron</td>
</tr>
<tr>
<td>B</td>
<td>ammonia</td>
<td>Haber</td>
<td>vanadium(V) oxide</td>
</tr>
<tr>
<td>C</td>
<td>sulfuric acid</td>
<td>Contact</td>
<td>vanadium(V) oxide</td>
</tr>
<tr>
<td>D</td>
<td>sulfuric acid</td>
<td>Haber</td>
<td>iron</td>
</tr>
</tbody>
</table>

35 Which type of reaction occurs when lime is manufactured from limestone?

A combustion
B neutralisation
C redox
D thermal decomposition

36 Which statement is correct?

A Bitumen is used as a fuel for ships.
B Coal, natural gas and oxygen are all fuels.
C Hydrogen is the main constituent of natural gas.
D Petroleum is separated into useful substances by fractional distillation.

37 Which products are obtained by the cracking of an alkane?

<table>
<thead>
<tr>
<th></th>
<th>alkene</th>
<th>hydrogen</th>
<th>water</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>B</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>C</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>D</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
38 Ethanol is made by fermentation of sugars and by the catalytic addition of steam to ethene.

What are two advantages of making ethanol by the catalytic addition of steam to ethene rather than by fermentation of sugars?

A faster reaction and renewable raw materials
B purer product and faster reaction
C renewable raw materials and continuous process
D uses more energy and forms a purer product

39 The diagram shows the structure of a monomer and of the polymer made from it.

What are the monomer and polymer?

<table>
<thead>
<tr>
<th>monomer</th>
<th>polymer</th>
</tr>
</thead>
<tbody>
<tr>
<td>A ethane</td>
<td>poly(ethane)</td>
</tr>
<tr>
<td>B ethane</td>
<td>poly(ethene)</td>
</tr>
<tr>
<td>C ethene</td>
<td>poly(ethane)</td>
</tr>
<tr>
<td>D ethene</td>
<td>poly(ethene)</td>
</tr>
</tbody>
</table>

40 Proteins and starch are both natural polymers.

Both proteins and starch are hydrolysed by dilute acids.

What are the products of hydrolysis of proteins and of starch?

<table>
<thead>
<tr>
<th>products of hydrolysis of proteins</th>
<th>products of hydrolysis of starch</th>
</tr>
</thead>
<tbody>
<tr>
<td>A amines and carboxylic acids</td>
<td>simple sugars</td>
</tr>
<tr>
<td>B amines and carboxylic acids</td>
<td>alcohols and carboxylic acids</td>
</tr>
<tr>
<td>C amino acids</td>
<td>simple sugars</td>
</tr>
<tr>
<td>D amino acids</td>
<td>alcohols and carboxylic acids</td>
</tr>
</tbody>
</table>
Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

© UCLES 2019
The Periodic Table of Elements

<table>
<thead>
<tr>
<th>Group</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>atomic number</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>atomic symbol</td>
<td>H</td>
<td>He</td>
<td>Li</td>
<td>Be</td>
<td>B</td>
<td>C</td>
<td>N</td>
<td>O</td>
</tr>
<tr>
<td>name</td>
<td>hydrogen</td>
<td>helium</td>
<td>lithium</td>
<td>beryllium</td>
<td>boron</td>
<td>carbon</td>
<td>nitrogen</td>
<td>oxygen</td>
</tr>
<tr>
<td>relative atomic mass</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>9</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Group</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>V</td>
<td>VI</td>
<td>VII</td>
<td>VIII</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>3 Li</td>
<td>4 Be</td>
<td>5 B</td>
<td>6 C</td>
<td>7 N</td>
<td>8 O</td>
<td>9 F</td>
<td>10 Ne</td>
<td>11 Na</td>
</tr>
<tr>
<td>lithium</td>
<td>beryllium</td>
<td>boron</td>
<td>carbon</td>
<td>nitrogen</td>
<td>oxygen</td>
<td>fluorine</td>
<td>neon</td>
<td>sodium</td>
</tr>
<tr>
<td>19 K</td>
<td>20 Ca</td>
<td>21 Sc</td>
<td>22 Ti</td>
<td>23 V</td>
<td>24 Cr</td>
<td>25 Mn</td>
<td>26 Fe</td>
<td>27 Co</td>
</tr>
<tr>
<td>potassium</td>
<td>calcium</td>
<td>scandium</td>
<td>titanium</td>
<td>vanadium</td>
<td>chromium</td>
<td>manganese</td>
<td>iron</td>
<td>cobalt</td>
</tr>
<tr>
<td>37 Rb</td>
<td>38 Sr</td>
<td>39 Y</td>
<td>40 Zr</td>
<td>41 Nb</td>
<td>42 Mo</td>
<td>43 Tc</td>
<td>44 Ru</td>
<td>45 Rh</td>
</tr>
<tr>
<td>rubidium</td>
<td>strontium</td>
<td>yttrium</td>
<td>zirconium</td>
<td>niobium</td>
<td>molybdenum</td>
<td>technetium</td>
<td>ruthenium</td>
<td>rhodium</td>
</tr>
<tr>
<td>55 Cs</td>
<td>56 Ba</td>
<td>57 La</td>
<td>58 Ce</td>
<td>59 Pr</td>
<td>60 Nd</td>
<td>61 Pm</td>
<td>62 Sm</td>
<td>63 Eu</td>
</tr>
<tr>
<td>caesium</td>
<td>barium</td>
<td>lanthanum</td>
<td>cerium</td>
<td>praseodymium</td>
<td>neodymium</td>
<td>promethium</td>
<td>samarium</td>
<td>europium</td>
</tr>
<tr>
<td>87 Fr</td>
<td>88 Ra</td>
<td>89–103 actinoids</td>
<td>89 Rf</td>
<td>90 Db</td>
<td>91 Sg</td>
<td>92 Bh</td>
<td>93 Hs</td>
<td>94 Mt</td>
</tr>
<tr>
<td>francium</td>
<td>radium</td>
<td>actinoids</td>
<td>rutherfordium</td>
<td>dubnium</td>
<td>seaborgium</td>
<td>bohrium</td>
<td>hassium</td>
<td>meitnerium</td>
</tr>
</tbody>
</table>

Lanthanoids

- La lanthanum 139
- Ce cerium 140
- Pr praseodymium 141
- Nd neodymium 144
- Pm promethium 147
- Sm samarium 150
- Eu europium 152
- Gd gadolinium 157
- Tb terbium 159
- Dy dysprosium 163
- Ho holmium 165
- Er erbium 167
- Tm thulium 169
- Yb ytterbium 173
- Lu lutetium 175

Actinoids

- Ac actinium –
- Th thorium 232
- Pa protactinium 231
- U uranium 238
- Np neptunium –
- Pu plutonium –
- Am americium –
- Cm curium –
- Bk berkelium –
- Cf californium –
- Es ernstium –
- Fm fermium –
- Md mendelium –
- No nobelium –
- Lr lawrencium –

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).