

Cambridge International AS & A Level

CANDIDATE NAME									
CENTRE NUMBER					CANDIDATE NUMBER				
MATHEMATIC	cs							97	09/22
Paper 2 Pure M	/lathemati	cs 2					May	/June	2020
						11	hour	15 mi	nutes
You must answ	er on the	questio	n pape	er.					
You will need:	List of fo	rmulae ((MF19)					

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

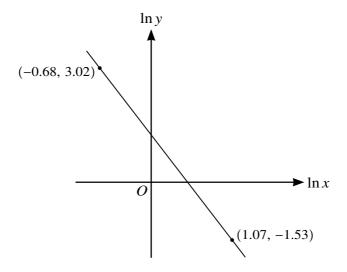
- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Blank pages are indicated.

JC20 06_9709_22/FP © UCLES 2020

[Turn over

BLANK PAGE


figures.	[3]

 coordinates of th	р		 	. -	[5
 			 		•••••
 		•••••	 	•••••	•••••
	•••••	•••••	••••••	••••••	•••••
		•••••	 	••••••	•••••
 		•••••	 •••••	••••••	•••••
 			 		•••••
 			 		•••••
 			 		•••••
 			 		•••••

Find th	e gradient	of the cur	ve at the	point $\left(\frac{1}{2}\right)$	$\frac{1}{9}\pi$, $\frac{1}{6}\pi$).						[5
								•••••			
						•			•••••		
• • • • • • • • • • • • • • • • • • • •		•••••		•••••	•••••	•••••		••••••	••••••	•••••	••••••
		•••••				•••••		•••••	•••••		•••••
•••••		•••••				•••••			•••••	•••••	
•••••				•••••	•••••	•••••		•••••	•••••	•••••	•••••
•••••											
		•••••									
•		•••••	•		•	••••••	•	•	••••••	•	•••••
•••••		•••••	••••••	•••••	••••••	••••••	••••••	••••••	••••••	•••••	••••••
•••••		•••••				•••••		•••••	•••••	•••••	•••••
•••••						•••••		•••••			
•••••						•••••					
•••••											
•••••	•••••••	••••••	•••••••	•••••	••••••	••••••	•	•••••	••••••	•••••	••••••
•••••		•••••		•••••	•••••	•••••		••••••	••••••	•••••	••••••
		•••••				•••••		•••••	•••••	•••••	•••••
•••••						•••••			•••••	•••••	•••••

6

4

The variables x and y satisfy the equation $y = Ax^{-2p}$, where A and p are constants. The graph of $\ln y$ against $\ln x$ is a straight line passing through the points (-0.68, 3.02) and (1.07, -1.53), as shown in the diagram.

Find the values of A and p .	[5]

5	(a)	Sketch.	on the same diagr	am, the graphs	x of y = 2x - y	-3 and $v = 3x$	x + 5.	[2]

(b)	Solve the inequality $3x + 5 < 2x - 3 $.	[3]

6 The polynomial p(x) is defined by

$$p(x) = 6x^3 + ax^2 - 4x - 3,$$

where a is a constant. It is given that (x + 3) is a factor of p(x).

(a)	Find the value of <i>a</i> .	[2]
(b)	Using this value of a , factorise $p(x)$ completely.	[3]

Hence solve the equation p(cosec θ) = 0 for $0^{\circ} < \theta < 360^{\circ}$.	
	•••••

a)	Show that $a = \sqrt{2.5 - 0.5 \ln(2a + 1)}$.

(b)	Using the equation in part (a), show by calculation that $1 < a < 2$.	2]
		••
		••
(c)	Use an iterative formula, based on the equation in part (a), to find the value of a correct to 4 significant figures. Give the result of each iteration to 6 significant figures.	to 3]
		••
		••
		••

		•••••
		••••••
		•••••
		•••••
		•••••
		•••••
(b)	Solve the equation $3 \sin 2\theta \cot \theta = 5$ for $0 < \theta < \pi$.	
(b)	Solve the equation $3 \sin 2\theta \cot \theta = 5$ for $0 < \theta < \pi$.	
(b)	Solve the equation $3 \sin 2\theta \cot \theta = 5$ for $0 < \theta < \pi$.	
(b)	Solve the equation $3 \sin 2\theta \cot \theta = 5$ for $0 < \theta < \pi$.	
(b)	Solve the equation $3 \sin 2\theta \cot \theta = 5$ for $0 < \theta < \pi$.	
(b)		

)]	Find the exact value of $\int_{\frac{1}{4}\pi}^{\frac{1}{2}\pi} 3 \sin x \cot \frac{1}{2} x dx$.	[5]
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.			

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

© UCLES 2020

9709/22/M/J/20